

OFFICE AUTOMATION with VBA (Office 97/2000)

CONTENTS

Section Topic Page

1 Introduction 3

1.1 Macro Basics 5

2 Office Objects 9

3 Visual Basic for Applications 15

3.1 Control Structures 18

4 Excel Objects and Collections 21

5 Code Optimisation 27

6 ActiveX Controls and Dialog Boxes 31

6.1 Using ActiveX Controls 34

7 Working With Events 37

7.1 Worksheet Events 41

7.2 Chart Events 42

7.3 Workbook Events 43

7.4 Application Events 44

8 Using Custom Dialog Boxes 47

9 Menus and Toolbars 55

9.1 Menus 57

9.2 Toolbars 60

10 Word Objects 69

11 Interacting with Other Applications 93

12 Using DLLs and the Windows API 97

 Jeff Waldock , SHU Science & Maths. July 2000

1

2

Introduction

1. INTRODUCTION

This document is intended as an introductory guide to the development of customised
applications using Microsoft Office 97 or Office 2000. We concentrate on using the
Excel application, although the general skills gained are equally applicable to the other
Office applications. It is not an exhaustive review of all of the features of these two
packages - there are too many! I hope, however, to be able to describe the essential
features of programming in Visual Basic for Applications (VBA) and to illustrate some
of its capabilities by means of a range of illustrative examples.

The 'macro' language VBA is a variant of the popular Visual Basic programming
language. It offers the programmer the facility to automate and enhance the Office
application and to develop a customised application for an end user who may not have
the interest or desire to do so for themselves. These techniques can also be used to
develop applications which streamline the use of the Office applications for a more
expert user - they may be able to apply some level of customisation themselves.

In Office95 the macro language for Word was WordBasic, but this has now been
replaced by VBA. VBA can also be used to control Access, Powerpoint and Outlook, as
well as an increasing range of third-party applications (i.e. not made by Microsoft),
and therefore offers a unified, consistent programming interface.

One of the first questions to ask is - why do you need to program MS Office? Why do
you need to do more than use the built-in functions? These are some of the answers:

• Provision of a customised interface - toolbars/menus/controls/dialog sheets
• Provision of specialised functions
• The execution of complex sequences of commands and actions
• Complex data handling procedures
• Interaction with and use of other applications

If all this needs to be added on to Excel and Word to make them useful, why not use
Visual Basic itself? Clearly there are pros and cons to using VBA as a development
platform, and it is important to be informed of these:

Pros:
• Through VBA, Excel and Word provide a wide range of in-built functions
• It provides a convenient data display tool - the Excel worksheet
• It has powerful in-built charting facility.
• It provides simple access to the other built-in features, e.g. spell-checking
• Distribution is easier - so long as the target user has a copy of Office

Cons:
• There are a more limited set of graphical controls available than in VB
• In many cases data have to be written to cells (in Excel) before they can be used in

charts and some functions.
• There is a certain overhead in running Office apps - these are not lightweight apps!

This material will provide you with the information necessary to develop customised
applications that can carry out complex tasks with a high degree of automation. This
might be as simple as an added worksheet function that Excel does not provide, or it
might involve developing dialog boxes, coding and interacting with other applications
and Windows itself. It will be assumed that you are familiar with the BASIC
programming language, although if you are rusty you’ll soon pick it up again!

To make best use of this documentation you should use it in conjunction with the
sample programs provided via the unit's web pages. You can access these either by
following the links from the Maths main page:

3

Automating Office 97/2000

http://www.shu.ac.uk/maths/

or by going directly to

http://maths.sci.shu.ac.uk/units/ioa/

The best way to learn the language (as I’m sure you all know!) however, is to have a
particular task or problem to solve. You can then develop skills in VBA as necessary.

Before considering coding - i.e. writing VBA programs - you should first try recording a
sequence of actions using the macro recorder. Examination of the code this creates
will give some insight into the structure of the language, but you should note that it
will not generate efficient code!

How to Use These Notes
This booklet of notes is intended to be used as a reference source - you will probably
find it rather DRY reading on its own! You should work through the tutorial
exercises (at your own pace) referring to the notes in this book, and the on-line help,
as necessary. The exercises in the tutorials are intended to help you develop an
understanding of the various aspects of the Office programming environment and the
methods of coding. You will find all relevant material available for download from the
web pages for this unit, as given above.

Recommended Reading:
The following books may be worth a look:

MS Office97 Visual Basic Programmers' Guide, MSPress, 1997. £32.49

MS Office97 Visual Basic Step by Step, MSPress, 1997. £32.99

Excel97 Visual Basic Step by Step, Reed Jacobson, MSPress, 1997. £22.99

Word97 Visual Basic Step by Step, ??, MS Press, 1997. £32.99

Web Addresses:
http://maths.sci.shu.ac.uk/units/ioa/ Home page for this unit

http://msdn.microsoft.com/officedev The Microsoft page!

http://eu.microsoft.com/office/excel/support.htm Excel support

http://mspress.microsoft.com/ The Microsoft Press web site

http://www.shu.ac.uk/maths/ The SHUMaths home page

4

http://www.shu.ac.uk/maths/
http://maths.sci.shu.ac.uk/units/ioa/
http://maths.sci.shu.ac.uk/units/ioa/
http://msdn.microsoft.com/officedev
http://www.shu.ac.uk/maths/

Macro Basics

1.1 Macro Basics
To illustrate the essential methods of macro generation, we will start by using Excel.
The techniques are equally applicable to the other Office applications.

The version of VBA included with Excel is a major overhaul of the version 5 software
(included with office 95). Whereas in the previous version it was accessed via a
module sheet added to the workbook the VBA 'macro' editor is now a complete
development environment.

When you start to write VBA macros, you really need to learn two skills - how to work
with VBA and how to deal with the 'host' application, such as Word or Excel. The
more you know about Words as a word processor and Excel as a spreadsheet the
more effective you can be at developing macros to control them.

Creating a Simple Macro

At the most basic level, automation of Excel could involve recording a sequence of
actions using the macro recorder and assigning the resulting macro to a keystroke
combination, a toolbar button, a menu item or a control object. To record a macro,
carry out the following:

• Select "Tools", "Macro", "Record New Macro" from the menu bar. Alternatively,
display the Visual Basic toolbar (right click on the toolbar and select "Visual
Basic") A dialog box will appear containing the default name of the macro
(macro1).

• By default macros you create will not be assigned to a keystroke combination,

menu, toolbar or control object - you need to do this manually. You can at this
choose to add the new macro as a shortcut key if you wish.

• Call the macro "BoldItalic" and select "OK". A new macro sheet called "BoldItalic"
will be generated and a small floating toolbar with the "stop macro" button
appears.

• Carry out the sequence of actions you want to record. For example, you might
want to select the range of cells "A1:C10", and make the text bold and centred, by
clicking on the appropriate buttons on the toolbar.

• Click on the "stop macro" button. The floating toolbar disappears, and the macro
recording stops.

• You can test the macro out by selecting the cell range as before, deselecting bold
and italic, entering some text into one or more cells in the range, and running the
macro (from the menu).

You might well wonder, however, where the code went to! Under Excel 5 and 7 the
macro recorder would have created a new module sheet and put the code in there.
Under Excel97/2000, you have to go looking for it! Recorded macro code is now

5

Automating Office 97/2000

placed in a Module which may be accessed from the VBProject explorer. You can also
manually add a module and edit it, or edit a pre-existing module.

Code may also be added to Event procedures which will be found either within the
Worksheet, or on a UserForm - more about those later.

If you have not displayed the Visual Basic toolbar, do so now:

Select the fourth icon - this activates the Visual Basic editor.

This editing environment will seem to be rather complex at first, even if you are used
to programming previous versions of Excel. We will look at the various parts of this in
more detail later, but you will note that in the VBAProject window (top left) are listed
the components of your workbook. These objects include the workbook itself, the
active sheet, and the modules. The module is where recorded macros will be placed.
If you want to make more room to view macros in the editing window, and do not
need to see the Project or Properties window, close those down and maximise the
Module window.

Double-click on "Module 1" to view the code recorded by our BoldItalic macro:

6

Macro Basics

Sub BoldItalic()
'
' BoldItalic Macro
' Macro recorded 29/06/98 by Jeff Waldock
 Range("A1:C10").Select
 Selection.Font.Bold = True
 Selection.Font.Italic = True
 Range("B4").Select
End Sub

This is the Visual Basic for Applications (VBA) code generated by the macro recorder.
Note that

The procedure begins with "Sub modulename()" and end in "End Sub".

The lines beginning with an apostrophe (') are comments.

The range of cells required is specified by means of the Range object, to which the
Select method has been applied. This follows the general rule of Object.Action.

The Selection is made bold and italic by applying the relevant value to the property of
the selected object. This follows the general rule of Object.Property = Value.

If you now wish to assign this macro to a keystroke combination, do the following:

• Choose "Tools", "Macro", "Macros" from the menu.

• Select your macro from the list provided and click "options"

• You then have the option of assigning the macro to a keystroke combination.

The first time you record a macro it is placed in a new module. Each time you record
an additional macro, it is added to the end of the same module, but if you do so after
closing and re-opening the workbook, any macros recorded are placed in a new
module. There is no way for you to control where the macro recorder places a new
macro. You can, of course, edit, replace and the macros afterwards.

Even if you do not want to edit the macros, the location should not be a problem.
When you use the macro dialog box to select and edit a macro, it will automatically
take you to the correct module.

7

Office Objects

2. OFFICE OBJECTS

In order to understand the structure of VBA as applied to Office 97/2000, it is
necessary to understand the object model. Objects are the fundamental building
blocks of the Office applications - nearly everything you do in VBA involves
manipulating objects. Every unit of content and functionality in the Office suite - each
workbook, worksheet, document, range of text, PowerPoint slide and so on - is an
object that you can control programmatically in VBA. When you understand the Office
object model you are ready to automate tasks! As stated above, all objects in Office
can be programmed or controlled; however there are hundreds altogether, ranging
from simple objects such as rectangles and boxes to pivot-tables and charts. It is not
necessary to learn them all (!) - you just need to know how to use them, and where
to look for information about them - all are fully documented in the on-line VBA help
file.

Objects, Properties and Methods
As before we will use Excel to demonstrate the use of Office objects - objects in Word
will be dealt with in just the same way.

All objects have properties and methods. VBA allows the control of Excel objects
through their properties and methods. In general, you use properties to get to
content and methods to get to functionality. The Excel Workbook object, for example,
has a number of properties, including:

 Author the name of the person who created the workbook

 Name the name of the workbook

 Path the full disk path where the workbook is saved

 HasPassword true or false

Note that the property values may be numerical, string or Boolean, and that they may
be specific or apply to several objects. Properties may be obtained or set by
appropriate assignment statements in VBA. When doing so, objects and properties
are referred to by using a dot to separate them:

 Workbooks("Book1.XLS").Author="Donald Duck"

This code may be incorporated into a VBA macro as follows:

Sub SetAuthorName()
 Workbooks("Book1.XLS").Author="Donald Duck"
End Sub

Getting property settings works in much the same way:

 AuthorName=Workbooks("Book1.XLS").Author

In addition to properties, objects have methods - these are actions that can be
performed on or by them. Examples of workbook methods are:

 Activate Activates the first window associated with the workbook

 Close Closes the workbook

 PrintPreview Displays workbook in printpreview mode

 Save Saves the workbook

 SendMail Send the workbook as embedded object in an e-mail message

9

Automating Office 97/2000

Methods may be called by simply referring to the object and method. Methods may
additionally allow or require extra information to be supplied as arguments. The
Close method of the Workbook object has three arguments: SaveChanges (true or
false), FileName and RouteWorkbook (true or false). There are several ways to
carry out this call:

(1) Workbooks("Book1.XLS").Close
 In this case the arguments take on default values.

(2) Workbooks("Book1.XLS").Close True, "Thisbook.XLS", False
 Here the arguments are given - they must be in the correct order.

(3) Workbooks("Book1.XLS").Close saveChanges:=True, fileName:="X.XLS", _
 routeWorkbook:=False

Here the order does not matter. Note the line continuation character. In
practice this is not often necessary since Excel will allow 1024 characters on
one line.

Relation of Object Model to User-Interface
You can interact with an application's objects either directly (using the mouse and/or
keyboard) or programmatically. In the first case you would navigate the menu tree to
find the feature you want; in VBA you navigate through the object model from the
top-level object to the object that contains the content and functionality you want to
work with. The properties and methods of the object provide access to the content
and functionality. For example, the following Excel example sets the value for cell B3
on the Sales worksheet in the Current.xls workbook:

Workbooks("Current.xls").Worksheets("Sales").Range("B3").Value=3

Since the user interface and VBA provide these two methods of gaining access to
Office 97/2000 features, many objects, properties and methods share names with
elements of the user interface, and the overall structure of the object model
resembles that of the UI. Consequently, for every action you can take in the UI,
there's a VBA code equivalent.

It's important to understand an object's place in the object model, because before you
can work with an object you must navigate through the hierarchy of the object model
to find it.

Referencing Objects: Singular Objects / Objects in Collections
When using the help facility to locate objects in VBA you may notice that there are
often two object types offered - usually the singular and plural versions of the same
name, such as "workbooks" and "workbook". The first of these is a collection object.
All VBA objects fall into one of two classes - singular objects, and objects in a
collection. Singular objects are referenced by name; objects in a collection are
referenced by an index in the collection. To help remember which you are dealing
with there are two simple rules:

1. A singular object has only one instance in a given context - i.e. it’s unique.

2. An object in a collection has multiple instances in a given context.

For example, Excel has a singular object named Application (Excel itself). The Font
object is singular because for any given cell there is only one instance of the Font
object. It does, however, have multiple properties (Name, Bold, Italic, etc). The
Worksheet object however, is an object in the Worksheets collection - many

10

Office Objects

Worksheets can exist on one Workbook file. Similarly the Chart object is an object
in a collection.

Singular objects are referenced directly:
 Application.Caption="My leg is broken"
 Application.ScreenUpdating=False

Objects in collections are referenced by using an index (list number or name):
 Worksheets(1).Name="Custard Pie"
 Charts("Chart1").HasLegend=True
 Worksheets(1).Visible=False
 Worksheets("Custard Pie").Visible=False

Note that both of the last two statements above would have the same effect. The
name reference is case-insensitive. You can also create new objects and add them to
a collection, usually by using the Add method of that collection. To add a new
worksheet to a workbook, for example, you would use:

Worksheets.Add

You can find out how many items there are in a collection using the Count property:

Msgbox "There are " + Worksheets.Count + "in this workbook"

Collections are useful in other ways as well - you can, for example, perform an
operation on all objects in a collection, using a For Each .. Next loop.

The Range Object - an exception
The Range object falls into a grey area between singular objects and objects in
collections, and exhibits some characteristics of both.

To set the contents of a particular cell or range of cells, use the Value property of the
Range object. e.g.

 Range("A1").Value=1
 Range("A1:F20").Value=1

Worksheet ranges can also have names:

 Range("A1").Name="Spud"
 Range("Spud").Value=1

Using the Excel Object Hierarchy
To manipulate the properties and methods of an object, it is sometimes necessary to
reference all objects that lie on the hierarchical path to that object. Suppose, for
example, that we want to set the Value property of a Range object representing the
first cell in the first Worksheet of the first Workbook in Excel. Using the full
hierarchical path we would have:

 Application.Workbooks(1).Worksheets(1).Range("A1").Value=1

This is not always necessary - how far up the hierarchy you need to start depends
upon the context in which the statement is made. The above statement could be
made anywhere in Excel under any circumstances. The first object, Application, can
be dropped since Excel understands that it is not necessary to reference itself!

The current workbook can be referenced implicitly using the fact that only one can be
active at one time (this idea applies to other objects in collections):

 ActiveWorkbook.Worksheets(1).Range("A1").Value=1

11

Automating Office 97/2000

ThisWorkbook may also be used - this will refer to the workbook containing the macro
code. If no ambiguity occurs, it is possible to remove successive levels of the
hierarchy; the minimal statement would then be:
 Range("A1")=1

 (Value is the default property of the Range object.)

The active range can also be accessed via the Application objects Selection
property. There are several objects that have a Selection property - during
execution, VBA determines what type of object has been selected and evaluates
Selection to the appropriate object. When using Selection, you cannot use default
properties, so the minimal statement is:

 Selection.Value=1

Executing this code assigns 1 to the Value property of the selected range to 1,
whether it’s Range("A1") or Range("A1:Z256").

Sometimes it is inconvenient to refer to cells using the "An" format - we would rather
use the numerical values of the rows and columns. This can be done by using the
Cells property of the Application object, as follows:

 Cells(row,col).Value=1

where row and col are integer values referring to the row and column required.

Getting Help Writing Code
Although you will often know or guess the correct object names and syntax, but for
those occasions when this is not the case, Office application include a number of tools
to help.

Using the Macro Recorder
If you know how to carry out the task you want to perform by using the user-
interface, you can do this with the macro recorder turned on. You will probably want
to subsequently edit the code produced by the macro recorder to make it more
efficient and robust. But it is a very useful tool for getting the basic structure of your
code in place. To get help on a particular keyword, place the insertion point on or
next to the word you want help for, and press F1. The help file will automatically load
the correct topic, which will give a full explanation of the keyword or function together
with examples of its use.

Using the Object Browser
Each Office application contains an object library giving information about all of the
objects that application contains. The Object Browser lets you browse this
information, and may be accessed via the View menu in the VBA editor. You should
take the time to have a 'play' with this since it provides a quick way of finding what
methods an object supports, for example, and how it may be used in VBA.

Statement-Building Tools
There are a number of built-in tools to help build expressions and statements in VBA.
To turn these features on or off in the VBA editor, select one or more of the following
check boxes under "Code Settings" on the "Editor" tab in the "Options" dialog box
("Tools" menu).

12

Office Objects

Option Effect

Auto Syntax Check Determines whether VB should automatically
verify correct syntax after you enter a line of
code

Require Variable Declaration Determines whether explicit variable declarations
are required in modules. Selecting this check
box adds the statement "Option Explicit" to
general declarations in any new module.

Auto List Member Displays a list that contains information that
would logically complete the statement at the
current insertion point location.

Auto Quick Info Displays information about functions and their
parameters as you type.

Auto Data Tips Displays the value of the variable that the
pointer is positioned over. Available only in
break mode.

Auto Indent Repeats the indent of the preceding line when
you press ENTER - all subsequent lines will start
at that indent. You can press BACKSPACE to
remove automatic indents.

Tab Width Sets the tab width, which can range from 1 to 32
spaces (the default is 4 spaces)

These tools automatically display information and give appropriate options to choose
from at each stage of building an expression or statement. For example, with the
"Auto List Member" option selected, type the keyword "Application" followed by the
dot operator. You should see a box appear listing the properties and methods that
apply to the Application object. You can select an item from the list, or just keep
typing. Try these out!

13

VBA

3. Visual Basic for Applications (VBA)
This version of BASIC has many of the standard BASIC constructs, as you would
expect, but there are a number of additional structures, and some different syntax, for
this particular application. As a programmer with some experience of BASIC you will
need to familiarise yourself with the syntax (some of which has been seen already),
learn about variable scoping and note the new control structures (the For Each ...
Next structure and With .. End With).

Tips for Learning VBA
Before learning VBA it is important to have a good grasp of the relevant Office
applications - the more you know about the operation of the application and its
capabilities, the better prepared you will be for using VBA.

Learn what you need, when you need it. There is an almost overwhelming volume of
material - develop skills in the use of a small fraction of this first and learn other parts
as and when necessary.

Use the macro recorder. Office applications provide the facility for recording a
sequence of actions - you can then look at the VBA code produced and adapt or copy
it for other purposes. Sometimes it is quicker to record a macro than to type it from
scratch anyway!

Use Visual Basic help. Press F1 with the insertion point in any keyword takes you
straight to that part of the help file.

Variables, Constants and Data Types
The following table lists the data types that VBA supports:

Data Type Description Range

Byte 1-byte binary data 0 to 255
Integer 2-byte integer -32,768 to 32,767
Long 4-byte integer -2,147,483,648 to 2,147,483,647
Single 4-byte floating point number -3.4E38 to -1.4E-45 (-ve values)

1.4E-45 to 3.4E38 (+ve values)
Double 8-byte floating point number -1.79E308 to -4.9E-324

4.94E-324 to 1.79E308
Currency 8-byte number with fixed decimal

point
-922,337,203,685,477.5808 to
+922,337,203,685,477.5807

String String of characters 0 to approx 2 billion characters
Variant Date/time, floating-point number,

integer, string or object. 16
bytes, plus 1 byte for each
character if the value is a string.

Jan 1 100 to December 31 9999,
Numeric - same as double
String: same as string
Also can contain Null, False

Boolean 2 bytes True or False
Date 8-byte date/time value Jan 1 100 to December 31 9999
Object 4 bytes Any object reference
User-defined dependent on definition

Setting variables
Dim a as integer, b as double
Dim r as Object
Set r=worksheets(1).Range("A1:B10")
r.Value=1

15

Automating Office 97/2000

In the last example it is more efficient to declare r as a specific object:
Dim r as Range

By combining object variables with the new VBA With..Endwith statement it is
possible to produce much more compact code:
Worksheets(1).Range("A1:A10").Value=24
Worksheets(1).Range("A1:A10").RowHeight=50
Worksheets(1).Range("A1:A10").Font.Bold=True
Worksheets(1).Range("A1:A10").Font.Name=Arial
Worksheets(1).Range("A1:A10").HorizontalAlignment = xlCenter
Worksheets(1).Range("A1:A10").VerticalAlignment = xlBottom

This could be re-written as:
Set r=Worksheets(1).Range("A1:A10")
With r
 .Value=24
 .RowHeight=50
 With .Font
 .Bold=true
 .Name=Arial
 End With
 .HorizontalAlignment=xlCenter
 .VerticalAlignment=xlBottom
End With

Variable declaration
It is normally recommended that variables are always explicitly declared. This fulfils
two purposes

1. it ensures that spelling mistakes are picked up (undeclared variables will be
flagged) and

2. since undeclared variables are given the Variant type, taking up a minimum of 16
bytes, it ensures that memory is efficiently used.

By placing the declaration Option Explicit at the top of your module, you can
ensure that Excel requires the explicit declaration of all variables. Alternatively, you
can change the default data type from Variant to, say, integer by means of the
statement DefInt A-Z which must also be placed before any subroutines.

Array declaration
Arrays are declared in a similar way to variables. You use the Private, Public, Dim
or Static keywords and use integer values to specify the upper and lower bounds for
the array. You use the As keyword to declare the array type. For example:

Dim counters(15) as Integer
Dim sums(20) as Double

User-defined Data Types
You can create your own data types..
Type StudentData
 sName as String
 sAge as Integer
 sBorn as Date
End Type
Sub xxx()

16

VBA

 Dim Student1 as StudentData
 Student1.sName="Teresa Green"
 Student1.sAge=99
 Student1.sBorn=#31/12/1896#
 Msgbox Student1.sName & ", Age " & Student1.sAge & _
 ", Born " & Student1.sBorn & "."
End Sub

Note that the Msgbox statement should all on one line - the underscore character has
been used as a continuation character.

Variable Scope
This refers to the area in the VBA application in which a variable can be accessed.
There are three levels of scope :

(1) procedure level : declarations made within a sub-program

(2) module level : declarations made at the start of a module and

(3) project level : as module level, but using the Public keyword

At the procedure level, variables can also be declared using the keyword Static,
which means that the value of the variable is preserved between calls to the
procedure.

Setting an Object Variable

You declare an object variable by specifying for the data type either the generic
Object type or a specific class name from a referenced class library. For example:

Dim mySheet as Object

For many reasons it is much better to declare a specific object type, so that VBA can
carry out necessary checks to ensure that the object exists etc. For example:

Dim mySheet as WorkSheet
Dim myRange as Range

In addition to specifying a class name you may need to qualify the object variable type
with the name of the application hosting the object:

Dim wndXL as Excel.Window
Dim wndWD as Word.Window
Dim appWD as Word.Application

To assign an object to an object variable, use the Set statement:

Dim myRange as Excel.Range
Set myRange = Worksheets("Sheet1").Range("A1")

If you do not use the Set statement, VBA will not realise you are trying to set an
object reference, and think instead that you are trying to assign the value of the
default property to the variable. For instance:

myRange = WorkSheets("Sheet1").Range("A1")

will result in the contents of the cell A1 being stored in the variable myRange.

17

Automating Office 97/2000

3.1 Control Structures
Execution flow in VBA can be controlled by a number of in-built structures. If left to
its own devices, VBA will process the lines of code in sequential order. Two sets of
common structures are included with all languages to help the programmer modify the
flow of logic: decision structures and loop structures.

Decision Structures

If .. Then
If .. Then .. Else
If .. Then .. ElseIf .. EndIf
Select Case .. End Select

Loop Structures

While .. Wend
Do While .. Loop
Do Until .. Loop
Do .. Loop Until
Do .. Loop While
For .. Next
For Each .. Next

Each of these is probably already familiar to you, with the possible exception of the
last one. The For Each ... Next structure is very powerful and allows you to loop
through all of the objects in a collection, or all the elements in an array. e.g.

Option Base 1
Sub xxx()
 Dim StudentName(3) as String
 Dim Student as Variant
 StudentName(1)="John Smith"
 StudentName(2)="Paul Smith"
 StudentName(3)="Anne Smith"
 For Each Student in StudentName
 Msgbox Student
 Next
End Sub

One of the benefits of this structure is that you don’t need to know in advance how
many elements have been filled in the array. Its real power, however, is in the
manipulation of collections of objects:

Sub xxx()
 Dim SheetVar as Worksheet
 For Each SheetVar in ActiveWorkbook.Worksheets
 Msgbox SheetVar.Name
 Next
End Sub
Sub xxy()
 Dim x as Integer
 Dim Book as Workbook
 For x=1 to 10
 Workbooks.Add
 Next
 Windows.Arrange
 Msgbox "Workbooks have been arranged"
 For Each Book in Application.Workbooks
 If Book.Name<>ThisWorkbook.Name then Book.Close
 Next

18

VBA

 ActiveWindow.WindowState=xlMaximised
End Sub
Sub xxz()
 Dim Cell as Range
 Dim R as Range
 Set R=Range("A1:F20")
 For Each Cell in R
 Cell.Value=25
 Next
End Sub

Formulas & Functions
The Excel spreadsheet consists of two layers - the value layer and the function layer.
The value layer is active by default, so that the results of any formulae entered in cells
are displayed. When the formula layer is active the formulas are displayed. You can
select this by choosing "Tools", "Options", "View", "Formulas". Alternatively, you can
toggle between the two by using [Ctrl ~].

In Excel you enter a formula by using the = sign, followed by an expression which
may include a reference to other cells. This reference is by default in A1 notation. For
example, a formula which inserts the value in cell B3 multiplied by 10 would be
=B3*10.

To set Excel to accept formulas in R1C1 notation, choose "Tools", "Options" and
"R1C1". This formula is then =R3C2*10.

This notation allows the use of relative referencing by using square brackets. For
example, the following formula takes the value of a cell three rows down and one to
the right and divides it by 5:

=R[3]C[1]/5

Entering Formulas and Functions in VBA
Range("B12").Formula="=AVERAGE("B1:B11")

Creating your own worksheet functions using VBA
You can call a VBA function directly from a formula in a cell. For example, you can
use the factorial function below as follows: =Factorial(5)

Function Factorial(Intl as Variant)
 Dim x as Integer
 Factorial=1
 If (Not (IsNumeric(Intl)) or Int(Intl)<>Intl or Intl<0) then
 Msgbox "Only non-negative Integers allowed"
 Factorial="#NUM!"
 Else
 For x=1 to Intl
 Factorial=Factorial*x
 Next
 End If
End Function

19

Excel Objects and Collections

4. EXCEL OBJECTS AND COLLECTIONS

VBA supports a set of objects that correspond directly to elements in EXCEL. For
example, the Workbook object represents a workbook, the Worksheet object
represents a worksheet and a Range object represents a range of cells. To perform a
task in VBA you return an object that represents the appropriate Excel element and
then manipulate it using that object’s properties and methods. For example, to set
the value of a cell using the Value property of the Range object:

 Worksheets("Sheet1").Range("A1").Value=3

A collection is an object that contains a group of related objects. The Worksheets
collection object contains Worksheet objects, for example. Each object within a
collection is called an element of that collection. Because collections are objects, they
have properties and methods, just as singular objects do. In the above illustration,
the Worksheets method returns a Worksheet object (the method actually returns
one member of the Worksheets collection). When you want to work with a single
object, you usually return one from a collection. The property or method you use to
return the object is called an accessor. Many accessors take an index that selects
one object from the collection.

Building an Expression to Return an Object
You can either type the expression from scratch, or use the macro recorder to
generate the expression, and modify the result as necessary. For example, suppose
you need help building an expression that changes the font style and font size for the
title of a chart. The macro recorder might produce the following:

 Sub macro1()
 ActiveChart.ChartTitle.Select
 With Selection.Font
 .Name="Times New Roman"
 .FontStyle="Bold"
 .Size=24
 .Strikethrough=False
 .Superscript=False
 .Subscript=False
 .OutlineFont=False
 .Shadow=False
 .Underline=xlNone
 .ColorIndex=xlAutomatic
 .Background=xlAutomatic
 End With
 End Sub

You can now modify this, by

1. changing the ActiveChart property to the Charts method and use an index for
the argument - this will allow you to run the macro from any sheet in the
workbook.

2. removing the selection-based code. You also need to move the With keyword.

3. removing the properties of the Font object that the macro should not change

4. changing the procedure name

After modification, the macro now reads:

 Sub FormatChartTitle()
 With Charts(1).ChartTitle.Font
 .FontStyle="Bold"

21

Automating Office 97/2000

 .Size=24
 End With
 End Sub

Applying Properties and Methods to an Object
As seen earlier, you retrieve or change the attributes of an object by getting or setting
its properties. Methods perform actions on objects. Many properties have built-in
constants as their values - for example, you can set the HorizontalAlignment
property to xlCenter, xlLeft, xlRight and so on. The help topic for any given
property contains a list of built-in constants you can use. It is recommended that you
should use the built-in constant rather than the value the constant represents because
the value may change in future versions of VBA.

Using Properties and Methods which are Unique to Collections
The Count property and Add method are useful. The Count property returns the
number of elements in a collection. For example, the following code uses the Count
property to display the number of worksheets in the active workbook:

 Sub NumWorksheets()
 MsgBox "No of worksheets in this workbook : " & _
 ActiveWorkbook.Worksheets.Count
 End Sub

The Count property if useful when you want to loop through the elements in a
collection, although in most cases the For Each ... Next loop is recommended.

The Add method creates a new element in a collection, and returns a reference to the
new object it creates. This reference may be used in any required action on the new
object. For example:

 Sub CreateScratchWorksheet()
 Set newSheet = Worksheets.Add
 newSheet.Visible=False
 newSheet.Range("F9").Value="some text"
 newSheet.Range("A1:D4").Formula="=RAND()"
 MsgBox newSheet.Range("A1").Value
 End Sub

Declaring and Assigning Object Variables
Object variables may be declared in the same way as other variables:
 Dim mySheet as Object

This uses the generic Object type specifier. This is useful when you don’t know the
particular type of object the variable will contain. You can also declare an object using
a specific class name, e.g.

 Dim mySheet as Worksheet

An object is assigned to an object variable using the Set statement. For example, the
following code sets the object variable myRange to the object that refers to cell A1
on Sheet1:

 Set myRange=Worksheets("Sheet1").Range("A1")

You must use the Set statement whenever you want an object variable to refer to an
object. If you forget this, several errors may occur. Most will give an informative
error, but if you omit the declaration of the object variable and forget to use Set, then
Excel tries to assign the value contained within the object to your "object" variable.

22

Excel Objects and Collections

This may succeed, in that it does not give an error, but your macro will clearly not be
doing what was intended!

Looping on a Collection
There are several different ways in which you can loop on a collection, however the
recommended method is to use a For Each ... Next loop, in which VBA automatically
sets an object variable to return every object in the collection.

 Sub CloseWorkbooks
 Dim wb as Workbook
 For Each wb in Application.Workbooks
 If wb.Name <> ThisWorkbook.Name then wb.Close
 Next
 End Sub

Performing Multiple Actions on an Object
Procedures often need to perform several different actions on the same object. One
way is to use several statements:
 ActiveSheet.Cells(1,1).Formula="=SIN(180)"
 ActiveSheet.Cells(1,1).Font.Name="Arial"
 ActiveSheet.Cells(1,1).Font.Bold="True"
 ActiveSheet.Cells(1,1).Font.Size=8

This is easier to read, and more efficient, using the With ... End With statement

 With ActiveSheet.Cells(1,1)
 .Formula="=SIN(180)"
 .Font.Name="Arial"
 .Font.Bold="True"
 .Font.Size=8
 End With

The object reference can be a reference to a collection. This example sets the font
properties of all the text boxes on the active sheet:

 With ActiveSheet.TextBoxes
 .Font.name="Arial"
 .Font.Size=8
 End With

Working with the WorkBook Object
When you open or save a file in Excel, you're actually opening or saving a workbook.
In VBA the methods for manipulating files are methods of the Workbook object or
the WorkBooks collection.

To open a Workbook, use the Open method as follows:

Sub OpenBook()
 Set myBook = WorkBooks.Open(Filename:="Book1.XLS")
MsgBox myBook.Worksheets(1).Range("A1").value

End Sub

The above procedure opens a file called Book1.XLS in the current working directory
and displays the contents of cell A1 on the first worksheet in a message box.

Instead of "hard-coding" the location of Book1.XLS, you may want to give the user the
chance to locate the file to open themselves. The GetOpenFilename method
displays the standard file open dialog box, and returns the full path of the selected
file:

Sub DemoGetOpenFile()
Do

fName = Application.GetOpenFileName

23

Automating Office 97/2000

Loop Until fName<>False
MsgBox "Opening " & fName
Set myBook = WorkBooks.Open(Filename:=fName)

End Sub

You create a new workbook by applying the Add method to the WorkBooks
collection. Remember to set the return value of the Add method to a variable so you
can subsequently refer to the new object. When you first save a workbook, use the
SaveAs methods; subsequently you can use the Save method:

Sub CreateAndSave()
Set newBook = WorkBooks.Add
Do

fName = Application.GetSaveAsFileName
Loop Until fName <> False
NewBook.SaveAs FileName:=fName

End Sub

Working with the Range Object
The Range object can represent a single cell, a range of cells, an entire row or
column, a selection containing multiple ranges, or a 3-D range. It is unusual in that it
can represent both a single cell and multiple cells. There is no separate collection for
the Range object - it is both a single object and a collection.

Using the Range Method
One of the most common ways to return a Range object is to use the Range method.
The argument to a Range method is a string that’s either an A1-style reference or the
name of a range:

 Worksheets("Sheet1").Range("A1").Value=3
 Range("B1").Formula="=5-10*RAND()"
 Range("C1:E3").Value=6
 Range("A1","E3").ClearContents
 Range("myRange").Font.Bold=True
 Set objRange=range("myRange")

Using the Cells Method
The Cells method is similar to the Range method, but takes numeric arguments
instead of string arguments. It takes two arguments, the row and column respectively
of the cell required.

 Worksheets("Sheet1").Cells(1,1).Value=3
 Cells(1,1).Formula="=5-10*RAND()"
 Range("C1:E3").Value=6

The Cells method is very useful when you want to refer to cells using loop counters.

Combining the Range and Cells Methods
In some situations you may need to create a Range object based on top and bottom
rows and left and right columns, given as numbers. The following code returns a
Range object that refers to cells A1:D10 on Sheet1:

 Set myObj=Worksheets("Sheet1").Range(Cells(1,1),Cells(10,4))

Using the Offset Method

24

Excel Objects and Collections

It is sometime necessary to return a range of cells that’s a certain number of rows and
columns from another range of cells. The Offset method takes an input Range
object, and RowOffset and ColumnOffset arguments, returning a new range. The
following code determines the type of data in each cell of a range:

 Sub ScanColumn()
 For Each c In Worksheets("Sheet1").Range("A1:A10").Cells
 If Application.IsText(c.Value) Then
 c.Offset(0, 1).Value = "Text"
 ElseIf Application.IsNumber(c.Value) Then
 c.Offset(0, 1).Value = "Number"
 ElseIf Application.IsLogical(c.Value) Then
 c.Offset(0, 1).Value = "Boolean"
 ElseIf Application.IsError(c.Value) Then
 c.Offset(0, 1).Value = "Error"
 ElseIf c.Value = "" Then
 c.Offset(0, 1).Value = "(blank cell)"
 End If
 Next c
End Sub

Using the CurrentRegion and UsedRange Properties
These two properties are very useful when your code operates on ranges whose size is
unknown and over which you have no control. The current region is a range of cells
bounded by empty rows and empty columns, or by a combination of empty
rows/columns and the edges of the worksheet. The used range contains every non-
empty cell on the worksheet. The CurrentRegion and UsedRange properties apply
to the Range object; there can be many different current regions on a worksheet but
only one used range.

 Set myRange=Worksheets("Sheet1").Range("A1").CurrentRegion
 myRange.NumberFormat="0.0"

Looping on a Range of Cells
There are several ways of doing this, using either the For Each ... Next or the Do ..
Loop statements. The former is the recommended way:

This example loops through the range A1:D10 setting any number whose absolute
value is less than 0.01 to zero:

Sub RoundtoZero()
 For Each r in Worksheets("Sheet1").Range("A1:D10").Cells
 If Abs(r.Value)<0.01 then r.Value=0
 Next
End Sub

Suppose you want to modify this code to loop over a range of cells that the user
selects. One way of doing this is to use the InputBox method to prompt the user to
select a range of cells. The InputBox method returns a Range object that
represents the selection. By using the type argument and error handling, you can
ensure that the user selects a valid range of cells before the input box is dismissed.

Sub RoundtoZero()
 Worksheets("Sheet1").Activate
 On Error GoTo PressedCancel
 Set r=Application.InputBox(prompt:="Select a range of cells", Type:=8)
 On Error GoTo 0
 For Each c in r.Cells
 If Abs(c.Value) < 0.01 then c.Value=0
 Next
 Exit Sub
 PressedCancel:
 Resume

25

Automating Office 97/2000

End Sub

You could, of course, use the UsedRange or the CurrentRegion properties if you
don’t want the user to have to select a range.

26

Code Optimisation

5. CODE OPTIMISATION
VBA is very flexible - there are usually several ways to accomplish the same task.
When you are writing "one-off" macros you will probably be happy enough to get one
that does what is required; when writing one that will be used many times, or will be
used by a group of students, you will probably want to ensure that the most efficient
coding is used. The following techniques describe ways in which you can make your
macros smaller and faster.

Minimising OLE references
Every VBA method or property call requires one or more OLE calls, each of which
takes time. Minimise the number of such calls.

Use Object Variables
If you find you are using the same object reference many times, set a variable for the
object and use that instead.

Use the With Statement
Use the With statement to avoid unnecessary repetition of object references without
setting an explicit object variable.

Use a For Each ... Next Loop
Using a For Each ... Next loop to iterate through a collection or array is faster than
using an indexed loop. In most cases it is also more convenient and makes your
macro smaller and easier to debug.

Keeping Properties and Methods Outside Loops
Your code can get variable values faster than it can property values. You should
therefore assign a variable to the property of an object outside the loop and use that
within a loop, rather than obtaining the property value each time within the loop. For
example:

For iLoop=2 to 200
 Cells(iLoop,1).Value=Cells(1,1).Value
Next

this is inefficient and should be replaced by:

cv=Cells(1,1).Value
For iLoop=2 to 200
 Cells(iLoop,1).Value=cv
Next

If you’re using an object accessor inside a loop, try moving it outside the loop:

For c=1 to 1000
 ActiveWorkbook.Sheets(1).Cells(c,1)=c
Next

should be replaced by:

With ActiveWorkbook.Sheets(1)
 For c=1 to 1000
 .Cells(c,1)=c
 Next
End With

27

Automating Office 97/2000

Using Arrays to Specify Multiple Objects
Some of the methods that operate on objects in collections allow you to specify an
array when you want to operate on a subset of objects in a collection. The following
example calls the Worksheets method and the Delete method three times each

Worksheets("Sheet1").Delete
Worksheets("Sheet2").Delete
Worksheets("Sheet4").Delete

This could be reduced to one call to each by using an array:

Worksheets(Array("Sheet1", "Sheet2", "Sheet4")).Delete

Using Collection Index Numbers
Most object accessor methods allow you to specify an individual object in a collection
wither by name or by index number. Using the number is much faster than using the
name. Set against this, however, is the fact that using the name makes your code
easier to read, and will specify the object uniquely (the number could change).

Minimising Object Activation and Selection
Most of the time your code can operate on objects without activating or selecting
them. If you use the macro recorder a lot to generate your VBA code, you will be
accustomed to activating or selecting an object before doing anything to that object.
The macro recorder does this because it must follow your keystrokes as you select and
activate sheets and cells. You can, however, write much faster and simpler VBA code
that produces the same results without activating or selecting each object before
working with it. For example, filling cells C1:C20 on Sheet5 with random numbers
(using the AutoFill method) produces the following macro recorder output:

 Sheets("Sheet5").Select
 Range("C1").Select
 ActiveCell.FormulaR1C1="=RAND()"
 Selection.AutoFill Destination:=Range("C1:C20"), Type:=xlFillDefault
 Range("C1:C20").Select

All of the Select calls are unnecessary. You can replace the above with:

 With Sheets("Sheet5")
 .Range("C1").FormulaR1C1="=RAND()"
 .Range("C1").AutoFill Destination:=Range("C1:C20"),
 Type:=xlFillDefault
 End With

Keep in mind that the macro recorder records exactly what you do - it cannot optimise
anything on its own. The recorded macro uses the AutoFill method because that's
how the user entered the random numbers, but it can be done more efficiently in
code:

Sheets("Sheet5").Range("C1:C20").Formula="=RAND()"

When you optimise recorded code, think about what you are trying to do with the macro.
There is often a faster way to do something in VBA code that what has been recorded from
keystrokes and actions taken by the user.

28

Code Optimisation

Removing Unnecessary Recorded Expressions
Another reason the macro recorder produces inefficient code is that ti cannot tell
which options you’ve changed in a dialog box - it therefore explicitly sets all available
options. For example, selecting cells B2:B14 and then changing the font style to bold
using the Format Cells dialog box produces this code:

Range("B2:B14").Select
With Selection.Font
 .Name="Arial"
 .FontStyle="Bold"
 .Size=10
 .Strikethrough=False
 .Superscript=False
 .Subscript=False
 .OutlineFont=False
 .Shadow=False
 .Underline=xlNone
 .ColorIndex=xlAutomatic
End With

Setting the cell format to bold can be carried out with a single line of code without
selecting the range:

Range("B2:B14").FontStyle=Bold

Minimising the Use of Variant Variables
Although you may find it convenient to use variant types in your code, it is wasteful of
storage and slower to process such variables. Declare your variables explicitly
wherever possible.

Use Specific Object types
If you declare object variables with the Object generic type, VBA may have to resolve
their references at run-time; if you use the specific object declaration VBA can resolve
the reference at compile-time.

Use Constants
Using declared constants in an application makes it run faster, since it evaluates and
stores the constant once when the code is compiled.

Use Worksheet Functions When Possible
An Excel worksheet function that operates on a range of cells is faster than VBA code
doing the same thing on those cells. For example:

For Each c in Worksheets(1).Range("A1:A200")
 totalVal=totalVal+c.Value
Next

should be replaced by

totVal=Application.Sum(Worksheets(1).Range("A1:A200"))

Using Special-Purpose VBA Methods
There are also several special-purpose VBA methods that offer a concise way to
perform a specific operation on a range of cells. Like worksheet functions these
specialised methods are faster than the general-purpose VBA code that accomplishes
the same task. For example, the following code changes the value in each cell in a
range in a relatively slow way:

29

Automating Office 97/2000

For Each c in Worksheets(1).Range("a1.a200").Cells
 If c.Value=4 then c.Value=4.5
Next

The following code uses the Replace method, and is much faster:

Worksheets(1).Range("a1:a200").Replace "4", "4.5"

For more information about special-purpose VBA methods, see the relevant Help topic
and look at the list of the object’s methods.

Turning off Screen Updating
A macro that affects the appearance of a worksheet or chart will run faster when
screen updating is turned off. Set the ScreenUpdating property to False:

Application.ScreenUpdating=False

Excel automatically sets the ScreenUpdating property back to True when your macro
ends.

30

ActiveX Controls and Dialog Boxes

6. ACTIVEX CONTROLS AND DIALOG BOXES

Some applications that you develop may require the initial selection of options and
choices. To achieve this you can use a range of controls, such as buttons, check
boxes, option buttons and list boxes to create a custom user interface. This section
discusses how to use controls and dialog boxes to manage the way the user interacts
with your application. The following section discusses the use of menus and toolbars
to achieve a similar result. Each of these enhancements has its advantages and
disadvantages - you must decide which is the most appropriate.

Choosing the Best User Interface Enhancement
Controls, such as buttons and check boxes, can be placed on worksheets or chart
sheets next to the data they access so that using them causes only minimal
disruption. On the other hand, since controls are tied to one sheet you need to re-
create them if you want to access the macros from elsewhere.

If you need to display a single message, or ask the user for a single piece of
information, you can use a message box or input box. These pre-defined dialog boxes
are easy to create and use, but have only restricted uses.

You can place controls on a dialog sheet to create a custom dialog box - these are
useful when you want to manage a complex interaction between the user and the
application. They do not, however, offer the quickest access to commands and, since
they are stored on a separate sheet, can interrupt the flow of work.

Whereas dialog boxes offer the user a set of complex options and return information
to the user, and controls offer the most visually obvious connection to the data on
which they act, menus and toolbars offer a quicker and more convenient way to
expose options and commands to the user.

Using Built-in Dialog Boxes
Before adding custom controls or dialog sheets to your application, consider whether a
built-in dialog box meets your needs.

Using Message and Input Dialog Boxes
The following table lists the functions and methods for adding pre-defined dialog boxes
to your VBA application:

Use this To do this
MsgBox function Display a message and return a value indicating the

command button the user clicked

InputBox function Display a prompt and return the text the user typed

InputBox method Display a prompt and return the information the
user entered. this is similar to the InputBox
function, but provides additional functionality, such
as requiring the input to be of a specified type.

Message Box
This creates a simple dialog box that can display a short message, an icon and a
predefined set of buttons. The simplest message box contains only a message string
and an "OK" button:
 MsgBox "This is a message"

The general syntax is: MsgBox <string>,<buttons>,<title>, where:

31

Automating Office 97/2000

string is the text string you want in the message.
buttons is a numeric value which determines the buttons and icon shown (see table)
title is the string appearing in the title bar of the message box.

The numeric value of buttons is determined according to the following table:

Input values Return values

string value string value
vbOKOnly 0 vbOK 1

vbOKCancel 1 vbCancel 2

vbAbortRetryIgnore 2 vbAbort 3

vbYesNoCancel 3 vbRetry 4

vbYesNo 4 vbIgnore 5

vbRetryCancel 5 vbYes 6

vbCritical 16

vbQuestion 32

vbExclamation 48

vbInformation 64

vbDefaultButton1 0

vbDefaultButton2 256

vbDefaultButton3 512

vbApplicationModal 0

vbSystemModal 4096

You can use the built-in constants (Excel will automatically insert the correct
numerical value) or use the numbers - the former is recommended.

Once you have selected what combination of buttons and icon you require, you
construct the value for buttons by adding together the values. The return value will
determine the button chosen by the user.

Example: Create a message box with "YES", "NO" and "CANCEL" buttons, with the
question mark icon, make the "NO" button default, and select it as ApplicationModal
(require a value to be selected before being allowed to continue with the application):

buttons=vbYesNoCancel + vbQuestion + vbDefaultButtons2
x=MsgBox("Do you want a game of Scrabble?",buttons,"Game query")
Select Case x
 Case vbYes
 MsgBox "You chose yes!"
 Case vbNo
 MsgBox "You chose no!"
 Case vbCancel
 MsgBox "You chose cancel!"
End Select

32

ActiveX Controls and Dialog Boxes

InputBox
The InputBox function creates and displays a simple dialog box containing a prompt,
an edit box, and OK and Cancel buttons. If you require a more elaborate dialog box,
you must create a custom dialog box using a dialog sheet (see later). The return
value from the InputBox function is the string entered by the user. If the input box
is empty, or if the user pressed Cancel the return value is an empty string. The
following displays a simple input box:

 radius=InputBox("Enter the circle radius:", "Circle Radius")

The InputBox method of the Application object is similar but allows you to specify
the desired data type for the data entry (a range, or a string for example). If the user
enters data with an incorrect type, Excel displays a message indicating this.

If a data type is specified, the return value from the InputBox method has that data
type if the user pressed Enter or OK. If the data type is not specified the return value
is a string. In either case, the return value is False if the user pressed Cancel or Esc
to cancel the dialog box. The full syntax includes the facility to specify the screen
location of the input box and context-sensitive help (see the Help file) but the main
parameters are:

 result=Application.InputBox(Prompt:="....", Type:=n)

The value of n may be one of the following:
 0 Formula
 1 Number
 2 String
 4 Logical
 8 Range
 16 Error
 64 Array of values

The following code uses the InputBox method to ask the user for a search range and
a search value. the search range must be a valid Range reference and the search
value must be a number.

Sub CountValues()
 cellCount=0
 Set rangeToSearch = Application.InputBox(Prompt:="Enter the range
 to search", type:=8) 'type=8 - must be a range object
 searchValue = Application.InputBox(Prompt:="Enter the search
 value", Type:=1) 'type=1 - must be a number
 If searchValue=False then Exit Sub 'user clicked Cancel
 For Each c in rangeToSearch
 If c.Value=searchValue then cellCount=cellCount+1
 Next
 MsgBox cellCount
End Sub

Displaying Built-in Excel Dialog Boxes
In addition to the message box and input box, Excel has over 200 other built-in dialog
boxes each of which allows the user to perform actions. For example, the built-in File
Open dialog box allows the user to open a file, and the Clear dialog box allows the
user to clear a range of cells.

The Dialogs method returns a built-in dialog box. This method takes as argument a
built-in constant that begins with "xlDialog" and corresponds to a dialog box name.
For example, the constant for the File Find dialog box is xlDialogFileFind. The Show
method displays the dialog box. To display the built-in File Open dialog box, with the
default directory set to C:\Windows\Excel:

33

Automating Office 97/2000

 Application.Dialogs(xlDialogOpen).Show("C:\Windows\Excel")

The dialog box remains open until the user has dismissed or cancelled it - the return
value is True if the user clicked OK or pressed ENTER, False if the user clicked Cancel
or pressed ESC. Built-in dialog boxes are fixed - you cannot modify them in any way -
but you can create a custom dialog box that looks just the same (see later).

6.1 USING ACTIVEX CONTROLS

You can place controls, such as buttons, check boxes, list boxes and so on, on
worksheets, chart sheets or userforms - not on a module. Placing controls on a
userform creates a custom dialog box. Controls on worksheets and charts have the
benefit of being closely tied to the data they use; custom dialog boxes are best when
you want to use the same set of controls with a number of different worksheets - you
retain generality.

Using Custom Controls in your Application
The controls may be selected from the Forms toolbar. You select the control by
clicking on it and draw it on your sheet (click on the sheet and drag until the control’s
outline is the size and shape you want). You can size it automatically to fit cells by
holding down the ALT key as you draw it.

You can also add a control using the Add method for the appropriate control
collection. Arguments specify the position of the top left corner of the control and its
height and width:

 Worksheets("Sheet1").Buttons.Add 50, 25, 100, 20

After placing the control, a dialog box appears from which you can set the initial
properties of the control. You can also assign a macro/VBA procedure to the control -
when the user clicks the button, check box or whatever, Excel runs the associated
procedure.

You can also link a control directly to a cell on a worksheet without using procedures.
This way you can simplify the user interface for a worksheet so that the user can set
options using the mouse rather than by typing data into a cell. For example, you can
link a checkbox to a cell, and when the check box is selected that call contains the
value True, when de-selected it contains the value False. Your procedure can make
use of this value in carrying out its calculation(s). See later section "Linking Controls
to Worksheet Cells".

Selecting a Control
Selecting a control is different from clicking it. The latter runs the associated macro,
the former allows editing of the properties of the control. You select a control either
by right-clicking it or by holding down the CTRL key while you left-click it. In code you
can select a control using the Select method.

Setting Control Properties
Default properties are initially assigned to controls, but these may be changed by
selecting "Format Object" from the pop-up menu that appears when you right-click on
the control.

34

ActiveX Controls and Dialog Boxes

Assigning Code to Controls
You can assign a procedure to a control either at the time the control is created or by
selecting the appropriate item from the pop-up menu. The code will be executed
when the appropriate action occurs to the control. This can also be achieved in code:

With WorkSheets(1)
 .buttons(1).OnAction="Macro1"
End With

The above code will assign the "Macro1" procedure to execute whenever the first
button on the worksheet is clicked. TIP: you can use the Caller property of the
Application object to determine which button was pressed. For buttons, the Caller
property returns the button name.

Linking Controls to Worksheet Cells
Some controls can be linked to worksheet cells. If the cell value changes the control
value changes, and vice versa. Any formulas referencing the linked cell will therefore
be recalculated when you change the control. Worksheet cells can be linked to check
boxes, list boxes, drop-down list boxes, option buttons, scroll bars and spinners. The
link is a property of the control, not of the linked cell. You can link one cell to several
controls, but a control can only be linked to one cell. You can reference the linked cell
in any other cell where you want to use its value. Cells may be linked in VBA code as
follows:

 Worksheets("Sheet1").CheckBoxes("Check Box 3).LinkedCell="Sheet1!A5"

List boxes and drop-down list boxes also use the ListFillRange property, which sets
the worksheet range used to fill the list box. e.g.

 Worksheets("Sheet1").ListBoxes("List Box 2).ListFillRange="Sheet1!a5:a10"

Check Boxes
The value in the linked cell can be checked (True), unchecked (False) or greyed-out
(#N/A), reflecting the state of the check box. Entering one of these values in the
linked cell changes the value of the check box accordingly; manually changing the
check box changes the value in the linked cell.

Option Buttons
For grouped option buttons that are all linked to the same cell, the value in the linked
cell shows the ordinal number of the option button that is turned on. For example, if
an option button group contains four buttons and the third one has been selected, the
value in the linked cell will be 3. Note that for option buttons in an option button
group, selections are mutually exclusive. Also, changing the value in the linked cell
will change the selection; setting the value of the linked cell to <1 or >number in the
group will de-select all buttons in the group.

List Boxes
For a single-select list box the value in the linked cell shows the ordinal number of the
selection in the list. For a multiple-selection list box the value in the linked cell has no
meaning.

Scroll Bars
The value in the linked cell specifies the current value of the scroll bar control. The
Format Object dialog box allows you to specify minimum and maximum values for the
scroll bar and the amount by which the position value changes when the user clicks
the arrows or the scroll bar. You can also specify these values using the Min, Max,

35

Automating Office 97/2000

SmallChange and LargeChange properties. Changing the value in the linked cell
changes the position of the scroll box; values less than the specified minimum or
greater than the specified maximum move the scroll box to the minimum or maximum
positions respectively.

Spinners
The value in the linked cell represents the value of the spinner. Unlike a scroll bar, a
spinner has no visible position indicator. However, you set minimum and maximum
values for a spinner in just the same way, and the spinner value increases when you
click the up arrow, and decreases when you click the down arrow by an amount
specified by the SmallChange property.

36

Working With Events

7. WORKING WITH EVENTS
Visual programming is all about responding to events - that is why it is often referred
to as event-driven programming. The basic idea is that small chunks of code are
attached to event procedures - the action of clicking a button called Button1, for
example, will run a piece of code called Button1_click.

An event in Excel is the occurrence of an action, such as opening a workbook,
switching to a sheet, using a particular key combination or recalculating a worksheet.
Some events are initiated by Excel and some by the user, but in each case by
assigning procedures to these events you can enhance the way users interact with
your application.

There are three main classes of event-driven procedures, organised according to the
way in which they are associated with events. You can associate a procedure with...

1. the action of clicking a button or other object placed on a worksheet. This is
carried out by using the "Assign Macro" command on the object’s properties menu

2. one of a specific set of events by giving the procedure a special automatic
procedure name that begins with "Auto_"

3. a defined event for an object by setting an OnEvent property of the object (such as
the OnWindow or OnCalculate property) to the procedure name.

If you've used Visual Basic or a similar event-driven language (Delphi, JBuilder etc)
you are already familiar with this type of programming. Most of the code in these
languages is written to respond to events, such as when the user clicks on a button or
a list box. In previous versions of Excel you may have used properties such as
OnSheetActivate or OnEntry to cause a macro to run when a sheet is activated or
changed. This is also event-driven programming. Office 97/2000 expands on the list
of events and adds event procedures that receive arguments.

In Excel 97/2000 you can write event procedures at the worksheet, chart, workbook
or application level. For example, the Activate event occurs at the sheet level, and
the SheetActivate event is available at both the workbook and application levels.
The SheetActivate event for a workbook occurs when any sheet in that workbook is
activated. At the application level, this event occurs when any sheet in any open
workbook is activated.

Creating Automatic Procedures
An automatic procedure runs automatically whenever one of a specific set of either
workbook-level or worksheet-level events occurs.

Workbook-Level Automatic Procedures
The following table lists the automatic procedures relating to workbook-level events:

Procedure Name Event that causes the procedure to run

Auto_Open User opens the workbook containing the procedure

Auto_Close User closes the workbook containing the procedure

Auto_Add
User installs the add-in that contains the
procedure, or the Installed property of the add-in
is set to True.

Auto_Remove
User removes the add-in that contains the
procedure or the Installed property of the add-in is
set to False.

37

Automating Office 97/2000

Note that these macros do not operate if the action is carried out by a macro.

Note also that you can prevent an automatic procedure from running by holding down
the SHIFT key while carrying out the action manually.

CREATING ON_EVENT PROCEDURES
Certain objects in VBA have properties and methods that are associated with specific
events. The Button object, for example, has an OnAction property which is
associated with clicking the button; the Application object has an OnRepeat
method, which is associated with clicking Repeat on the Edit menu. These events are
generated by Excel, sometimes as a result of user input. Other events, such as the
arrival of data from another application via OLE are not (see the OnData property).

If you associate a procedure with one of these properties or methods, that procedure -
called an OnEvent procedure or an event handler - will run whenever the event
associated with the method or property occurs.

Note that, although they still work, these events have been superseded by
new functions and methods in Office 97/2000. See "Worksheet, Chart,
Workbook and Application Events" later in this section.

The following table lists the properties and methods you can use to trap events:

Property or Method Event causing the associated procedure to run

OnAction Clicking a control or graphic object, clicking a menu
command or clicking a toolbar button

OnCalculate Recalculating a worksheet

OnData The arrival of data from another application by way of DDE
or OLE

OnDoubleClick Double-clicking anywhere on a chart sheet, dialog sheet,
module or worksheet

OnEntry Entering data using the formula bar or editing data in a cell

OnKey Pressing a particular key or key combination

OnRepeat Clicking repeat on the Edit menu

OnSheetActivate Activating a chart sheet, dialog sheet, module, worksheet,
workbook or Excel itself

OnSheetDeactivate Deactivating a chart sheet, dialog sheet, module,
worksheet, workbook or Excel itself

OnTime Waiting until a specific time arrives, or waiting for a specific
time delay

OnUndo Clicking Undo on the Edit menu

OnWindow Activating a window

There are several steps involved in creating and using any type of OnEvent procedure:

38

Working With Events

1. You must create the procedure (the event handler) you want to run when the
specified event occurs

2. Elsewhere in your VBA code you must associate the event handler with the event
you want to respond to. This is called trapping the event.

3. When you want to stop trapping this event, you must disassociate the event from
the event handler.

To associate an event with an OnEvent procedure
Set the property associated with the event - or set the procedure argument of the
method associated with the event - to the name of the OnEvent procedure:

 Activesheet.Buttons("MyButton").OnAction="ButtonClickHandler"
 Application.OnRepeat text:="Paste Again", procedure:="PasteAgain"

To disassociate an event from an OnEvent procedure
Set the property associated with the event - or set the procedure argument of the
method associated with the event - to the empty string "":

 Activesheet.Buttons("MyButton").OnAction=""
 Application.OnRepeat text:="Paste Again", procedure:=""

The following sections show how event trapping is carried out for each of the OnEvent
procedures:

OnAction Property
Example given above

OnCalculate Property
You can, for example, use an OnCalculate handler to update column widths when new
data are recalculated, as shown in the following example:

Sub TrapCalculate()
 Application.OnCalculate="FitColumns"
End Sub

Sub FitColumns
 Columns("A:H").EntireColumn.AutoFit
End Sub

OnEntry Property
An OnEntry event handler runs when the user either enters data on a worksheet using
the formula bar or edits data in a cell. It runs after the user enters data in a cell or in
the formula bar and then either presses ENTER, selects another cell or clicks in the
enter box on the formula bar. The following code checks data entered in a cell on
column B of the specified worksheet:

Sub TrapEntry()
 ActiveWorkbook.Worksheets("Sheet1").OnEntry = "ValidateColB"
End Sub

Sub ValidateColB()
 With ActiveCell
 If .Column=2 then
 If IsNumeric(.Value) then
 If .Value<0 or .Value>255 then
 MsgBox "Entry must be between 0 and 255"
 .Value=""
 End If
 Else
 ‘non-numeric entry
 MsgBox "Entry must be a number between 0 and 255"

39

Automating Office 97/2000

 .Value=""
 End If
 End If
 End With
End Sub

OnKey Method
An OnKey event handler runs when the user presses a specified key combination.
Unlike many other OnEvent handlers the OnKey handler does run if you use the
SendKeys method to simulate sending keystrokes to Excel under program control.

The following code runs the DoReports procedure when the user presses F12:

 Sub TrapKeys()
 Application.OnKey key:="{F12}", procedure:="DoReports"
 End Sub

OnTime Method
This event handler only works if Excel is running and the workbook containing the
OnTime event handler is loaded. For example, to accumulate and print a set of
reports every day at noon:

 Sub TrapTime()
 Application.OnTime earliestTime:=TimeValue("12:00:00"), _
 procedure:=DoReports
 End Sub

Note: with the OnTime procedure, a user can work until the specified time. With the
Wait method, the user cannot interact with Excel until the wait period is over:

 'wait 15 seconds
 Application.Wait Now+TimeValue("00:00:15")

OnWindow Property
The OnWindow event handler runs whenever the user switches to a window. To
associate a procedure with switching to any window in the Excel application:

 Application.OnWindow = "AllWindowHandler"

40

Working With Events

7.1 Worksheet Events

Worksheet, chart sheet, and workbook event procedures are available for any open
sheet or workbook. Note that to write event procedures for an embedded chart or for
the Application object, you must create a new object using the WithEvents keyword in
a class module.

Use the EnableEvents property to enable or disable events. For example, using the
Save method to save a workbook causes the BeforeSave event to occur. You can
prevent this by setting the EnableEvents property to False before you call the Save
method.

Application.EnableEvents = False
ActiveWorkbook.Save
Application.EnableEvents = True

Events on sheets are enabled by default. To view the event procedures for a sheet,
right-click the sheet tab and click View Code on the shortcut menu. Select the event
name from the Procedure drop-down list box.

Worksheet-level events occur when the user activates a worksheet, or changes a
worksheet cell, as shown below:

Event Occurs when ..

Activate the user activates the sheet. Use this instead of the
OnSheetActivate property

BeforeDoubleClick the user double-clicks a worksheet cell. Use this event instead
of OnDoubleClick.

BeforeRightClick the user right-clicks a worksheet cell.

Calculate the user recalculates a worksheet. Use instead of
OnCalculate.

Change the user changes a cell formula. Use instead of OnEntry.

Deactivate the sheet is active and the user activates a different sheet.
Does not occur when the user shifts focus from one window to
another showing the same sheet. Use instead of
OnSheetDeactivate.

SelectionChange the user selects a worksheet cell.

See the help file for more details about each event.

This example adjusts the size of columns A-F whenever the worksheet is recalculated:

Private Sub WorkSheet_Calculate()
 Columns("A:F").AutoFit
End Sub

41

Automating Office 97/2000

7.2 Chart Events

Chart events occur when the user activates or changes a chart. Events on chart sheets
are enabled by default. To view the event procedures for a sheet, right-click the sheet
tab and select View Code from the shortcut menu. Select the event name from the
Procedure drop-down list box.

Like worksheet-level events, chart-level events occur when the user activates or
changes a chart, as shown below:

Event Occurs when ..

Activate the user activates the chart sheet (does not work with
embedded charts). Use this instead of the OnSheetActivate
property

BeforeDoubleClick the user double-clicks a chart. Use this event instead of
OnDoubleClick.

BeforeRightClick the user right-clicks a chart.

Calculate the user plots new or changed data.

Deactivate the sheet is active and the user activates a different sheet.
Does not occur when the user shifts focus from one window to
another showing the same sheet. Use instead of
OnSheetDeactivate.

DragOver the user drags data over the chart

DragPlot the user drags a range of cells over the chart

MouseDown the user clicks a mouse button while the mouse pointer is
positioned over the chart

MouseMove the user moves the pointer over the chart

MouseUp the user releases a mouse button while the pointer is
positioned over the chart

Resize the user changes the size of the chart

Select the user selects a chart element

SeriesChange the user changes the value of a chart data point

Events for chart sheets are available by default in the VBA editor. To write event
procedures for an embedded chart, you must create a new object using the
WithEvents keyword in a class module. For more information, see Using Class
Modules with Events.

This example changes a point's border colour when the user changes the point value.

Private Sub Chart_SeriesChange(ByVal SeriesIndex As Long, _
ByVal PointIndex As Long)
 Set p = ActiveChart.SeriesCollection(SeriesIndex).Points(PointIndex)
 p.Border.ColorIndex = 3
End Sub

42

Working With Events

7.3 Workbook Events
Workbook events occur when the workbook changes or when any sheet in the
workbook changes. Events on workbooks are enabled by default. To view the event
procedures for a workbook, right-click the title bar of a restored or minimised
workbook window and click View Code on the shortcut menu. Select the event name
from the Procedure drop-down list box.

Event Occurs ..

Activate when the user activates the workbook

AddInInstall when the user installs the workbook as an add-in. Use
instead of the Auto_Add macro.

AddInUninstall when the user uninstalls the workbook as an add-in. Use
instead of the Auto_Remove macro.

BeforeClose before the workbook closes. Use instead of the
Auto_Close macro.

BeforePrint before the workbook is printed

BeforeSave before the workbook is saved. Use instead of the OnSave
property

Deactivate when the workbook is active and the user activates a
different workbook.

NewSheet after the user creates a new sheet

Open when the user opens the workbook. Use instead of the
Auto_Open macro.

SheetActivate when the user activates a sheet in the workbook. Use
instead of the OnSheetActivate property.

SheetBeforeDoubleClick when the user double-clicks a worksheet cell (not used with
chart sheets). Use instead of the OnDoubleClick property.

SheetBeforeRightClick when the user right-clicks a worksheet cell (not used with
chart sheets).

SheetCalculate after the user recalculates a worksheet (not used with chart
sheets). Use instead of the OnCalculate property.

SheetChange when the user changes a cell formula (not used with chart
sheets). Use instead of the OnEntry property.

SheetDeactivate when the user activates a different sheet in the workbook.
Use instead of the OnSheetDeactivate property.

SheetSelectionChange when the user changes the selection on a worksheet (not
used with chart sheets).

WindowActivate when the user shifts focus to any window showing the
workbook. Use instead of the OnWindow property.

WindowDeactivate when the user shifts focus away from any window showing
the workbook. Use instead of the OnWindow property.

WindowResize when the user opens, resizes, maximises or minimises any
window showing the workbook.

This example maximises Microsoft Excel when the workbook is opened

Sub Workbook_Open()
 Application.WindowState = xlMaximized
End Sub

43

Automating Office 97/2000

7.4 Application Events
Application events occur when a workbook is created or opened or when any sheet in
any open workbook changes.

Event Occurs ..

NewWorkbook when the user creates a new workbook

SheetActivate when the user activates a sheet in an open workbook. Use
instead of the OnSheetActivate property.

SheetBeforeDoubleClick when the user double-clicks a worksheet cell in an open
workbook (not used with chart sheets). Use instead of the
OnDoubleClick property.

SheetBeforeRightClick when the user right-clicks a worksheet cell in an open
workbook (not used with chart sheets).

SheetCalculate after the user recalculates a worksheet in an open
workbook (not used with chart sheets). Use instead of the
OnCalculate property.

SheetChange when the user changes a cell formula in an open workbook
(not used with chart sheets). Use instead of the OnEntry
property.

SheetDeactivate when the user deactivates a sheet in an open workbook.
Use instead of the OnSheetDeactivate property.

SheetSelectionChange when the user changes the selection on a sheet in an open
workbook.

WindowActivate when the user shifts focus to an open window. Use
instead of the OnWindow property.

WindowDeactivate when the user shifts focus away from an open window.
Use instead of the OnWindow property.

WindowResize when the user resizes an open window.

WorkbookActivate when the user shifts the focus to an open workbook

WorkbookAddInInstall when the user installs a workbook as an add-in.

WorkbookAddInUninstall when the user uninstalls the workbook as an add-in

WorkbookBeforeClose before an open workbook is closed.

WorkbookBeforePrint before an open workbook is printed.

WorkbookBeforeSave before an open workbook is saved.

WorkbookDeactivate when the user shifts focus away from an open workbook

WorkbookNewSheet when the user adds a new sheet to an open workbook.

WorkbookOpen when the user opens a workbook.

44

Working With Events

Using Class Modules with Events

To write event procedures for the Application object, you must create a new object
using the WithEvents keyword in a class module.

Unlike sheet events, embedded charts and the Application object do not have events
enabled by default. Before you can use events with an embedded chart or with the
Application object, you must create a new class module and declare an object of
type Class or Application with events. You use the Class Module command
(Insert menu) in the VBA editor to create a new class module.

To enable the events of the Application object, you would add the following
declaration to the class module:

Public WithEvents App as Application

After the new object has been declared with events, it appears in the Object box in
the class module, and you can write event procedures for the new object. When you
select the new object in the Object box, the valid events for that object are listed in
the Procedure box.

Before the procedures will run, however, you must connect the declared object in the
class module to the Application object. You can do this from any module by using
the following declaration (where "EventClass" is the name of the class module you
created to enable events).

Public X as New EventClass

After you have created the X object variable (an instance of the EventClass class), you
can set the App object of the EventClass class equal to the Microsoft Excel
Application object.

Sub InitializeApp()
 Set X.App = Application
End Sub

After you run the InitializeApp procedure, the App object in the EventClass class
module points to the MSExcel Application object, and the event procedures in the class
module will run whenever the events occur.

Although this all seems like hard work, one advantage is that you can use the same
event procedure for many objects. For example, suppose that you declare an object
of type Chart with events in a class module, as follows:

Public WithEvents cht As Chart

You can then use the following code to cause the event procedures to run whenever
an event occurs for either chart one or chart two.

Dim C1 as New EventClass
Dim C2 as New EventClass
Sub InitializeCharts()
 Set C1.cht = Worksheets(1).ChartObjects(1).Chart
 Set C1.cht = Worksheets(1).ChartObjects(1).Chart
End Sub

You can declare Worksheet or Workbook objects with events in a class module and
use the events in the new class with several sheets, in addition to the default event
procedures. You might use this technique to write an Activate event handler that
runs only when either sheet1 or sheet5 is activated. Or you can use a Chart object
declared in a class module to write an event handler for both embedded charts and
chart sheets.

45

UserForms

8. Using Custom Dialog Boxes - The UserForm
When you need to manage a complex interaction between the user and your
application, it is often necessary to create a custom dialog box. This allows you to
present all the options together, making it easier to use and read than controls placed
directly on a chart or worksheet. When the options have been selected the dialog box
is dismissed - this way, the controls only take up screen space as long as they are
needed.

In Office 97/2000, the concept of the dialog box has been refined from the Office
95/Excel 7 implementation to that of the UserForm. In effect, this means that you
can generate custom forms or windows in a similar way to stand-alone Windows
programs, such as Visual Basic, so that in principle , your VBA macro could run
entirely separately from the worksheet, chartsheet, document, or whatever. The
'dialog box' becomes a vehicle both for the input of user choices and selection of
options, as well as for the display of program output. This can also be an interactive
process, in which the display can be dynamic.

Creating and managing a custom dialog box is more complex than using controls
directly on a sheet however, and you must consider the trade-off between the
convenience to the user and the amount of work involved for you as the programmer.

Excel, Word and PowerPoint share powerful new tools for creating custom dialog boxes
- you only need to learn the mechanism for generating custom dialogs once and the
resulting forms can be used with any of these applications.

Once you have created a custom dialog box, you can add ActiveX controls (previously
known as OLE controls) to it in the same way that we saw previously that you could
place them directly onto a worksheet. You determine the way in which custom dialog
boxes and controls respond to specific user actions - for example, clicking a control or
changing its value - by writing event procedures that run whenever a specific event
occurs.

Designing Custom Dialog Boxes
To create a custom dialog box you must create a UserForm to contain controls, add
controls to the form, set the properties for the controls, and write the code that
generates the necessary response to form and control events.

Creating a New Dialog Box
Every custom dialog box in your project is a UserForm. New UserForms contain a title
bar and an empty area in which to place controls. To create one, click UserForm on
the Insert menu in the VBA Editor.

Use the Properties window to set the properties for the form - that is, its name and
appearance.

Adding Controls to a Custom Dialog Box
Use the Toolbox to do this. If it's not already visible, click Toolbox on the View
menu. You add controls by either dragging them from the toolbox, or by selecting
and then drawing them on the form. You can resize and move them as required once
they appear on the form.

Note: dragging a control (or a number of "grouped" controls) from a custom dialog
box back to the Toolbox creates a template of that control which you can then reuse
later. This is useful for producing a standard look and feel for your applications.

After you've added controls to the form, use the commands on the Format menu, or
the buttons on the UserForm toolbar in the VBAEditor to adjust the alignment and
spacing of the controls. Use the Tab Order dialog box (View menu) to set the tab
order of the controls on the form.

47

Automating Office 97/2000

¾ Test Exercise 1: Design and run a custom dialog box

• Create a new UserForm

• Insert a Frame control on this form

• Add three OptionButton controls to the Frame

• Click Run Sub/UserForm on the Run menu, or select the run button on the toolbar

The custom dialog box is displayed, and you should be able to use the option buttons.

• Click the close button on the UserForm title bar to exit run mode and return to
design mode.

Setting Control and Dialog Box Properties at Design Time
You can set some control properties at design time - before any macros are run. In
design mode, right-click a control and then click Properties on the shortcut menu to
display the Properties window. Property names are listed in the left-hand column in
the window, and property values are listed in the right-hand window. You set a
property value by typing in the new value in the space to the right of the property
name.

¾ Test Exercise 2: Set control properties in design mode
1. Create a new UserForm

2. Add an Image control, a CommandButton control and a few other controls (you
choose!)

3. Right click the Image control, select Properties, and find Picture in the list of
properties. Browse for and select a picture file by clicking the ellipsis button (…)
and clicking OK.

4. Click the CommandButton you added; the list of properties in the Properties
window changes to those of command buttons. Modify the Caption property to
read "Send Order".

5. Change the name of the command button to cmdSendOrder.
6. Change the ControlTiptext for the button to "Click here to send order".

7. Put "s" as the Accelerator property for the button. This is the shortcut key that
allows the keyboard to be used to select the button.

8. Run the form and test it out.

¾ Test Exercise 3: Set UserForm properties in design mode
1. Select the UserForm (click on the form background).

2. Try modifying some of the form properties (e.g. BackColor, Caption etc).

Creating Tabs in Dialog Boxes
If you need a single dialog box to handle lots of controls, you can sort them into
categories, create a dialog box with two or more tabs, and place each category on a
separate tab. To do this, add a MultiPage control to the dialog box and then add
controls to each tab (or page). To add, remove, rename or move a page in a
MultiPage control, right-click one of the pages in design mode and select the relevant
command from the shortcut menu.

NB: Do not confuse the MultiPage control with the Tabstrip control - there is a
danger of this as they look similar! Each page of a MultiPage control contains a
unique set of controls that you add and modify at design time. TabStrip controls are
intended to provide a quick means of selecting one of several items from a list to

48

UserForms

enable other controls to be updates at run-time. TabStrips do not act as containers
for other controls.

Writing Code to respond to Dialog Box Events
Each form or control recognises a predefined set of events, which can be triggered
either by the user or by the system. For example, a command button recognises a
Click event that occurs when the user clicks on the button and a form recognises the
Initialize event that occurs when the form is loaded. To specify how a form or control
should respond to an event, you write an event procedure.

To do this, open the Code window by double-clicking the object you wish to write an
event procedure for, and select the event name in the Procedure box (in the upper-
right corner of the window). Event procedures include the name of the UserForm or
control. For example, the name of the Click event procedure for the command button
Command1 is Command1_Click.

¾ Test Exercise 4: Write and run an event procedure for a command button
1. Create a UserForm and add a CommandButton, a CheckBox and a ComboBox.

2. Access the Properties window for the command button and change its name to
cmdSendOrder

3. Double-click the button to access the code window - the Click event procedure is
displayed since it is the default event for that object.

4. Add this code to display a simple message box: MsgBox "Hello"

5. Run the dialog box to see the results.

To see all the events that command buttons recognise, click the down arrow next to
the Procedure box in the Code window. Events that already have procedures written
for them appear bold. Click an event name in the list to display its associated
procedure.

To see the events for a different control on the same UserForm, or for the Userform
itself, click the object name in the Object box in the Code window, and then click the
arrow next to the Procedure box.

Using Custom Dialog Boxes
To exchange information with the user by means of a custom dialog box, you must
display the dialog box to the user, respond to user actions in the dialog box, then
either provide an appropriate response, or (if another procedure is supposed to run
after the dialog box is dismissed) retrieve the information the user entered.

Displaying a Custom Dialog Box
When you want to display a custom dialog box to yourself for testing purposes you
click Run Sub/UserForm on the Run menu in the VBA Editor. When you want to
display the dialog box to a user, however, you use the Show method. This example
displays the dialog box named "UserForm1"

UserForm1.Show

49

Automating Office 97/2000

Getting and Setting Properties at Run-Time
If you want to set default values for controls in a custom dialog box, modify controls
while a dialog box is visible, and have access to the information that a user enters in
the dialog box, you must set and read the values of control properties at run-time.

Setting Initial Values for Controls
To set the initial value, or default value, that a control will have every time the dialog
box is displayed, add suitable code to the Initialize event procedure for the UserForm
that contains the control.

¾ Test Exercise 5: Write and run an Initialize event procedure for a UserForm

1. Create a new UserForm, and add a TextBox, a ListBox and a CheckBox to it.

2. Display the code window by double-clicking the UserForm. Find the Initialize
procedure, and add this code to it:

 Private Sub UserForm_Initialize()
 With UserForm1
 .Textbox1.Text = "Paul Jones" 'sets default text
 .Checkbox1.Value = True 'checks check box by default
 With .ListBox1
 .Additem "North" 'these lines populate the listbox
 .Additem "South"
 .Additem "East"
 .Additem "West"
 .ListIndex = 3 'selects the 4th item in the list
 End With
 End With
 End Sub

 Note that the first item in arrays and collections is 0 by default.

3. Run the dialog box to see the results.

Use Me to Simplify Event Procedure code
In the preceding example, you can use the keyword Me instead of the code name of the
UserForm. That is, you can replace the statement With UserForm1 with the statement With
Me. The Me keyword used in code for a UserForm or a control on the UserForm represents
the UserForm itself. This technique lets you use long descriptive names for control while still
making code easy to write.

If you want to set the initial value (default value) for a control but you don't want that
to be the initial value every time you call the dialog box, you can use VBA code to set
the control's value before you display the dialog box that contains the control. The
following example uses the Additem method to add data to a list box, sets the value of
a text box, and displays the dialog box that contains these controls.

Private Sub GetUserName()
 With UserForm1
 .Listbox1.Additem "North"
 .Listbox1.Additem "South"
 .Listbox1.Additem "East"
 .Listbox1.Additem "West"
 .TextBox1.Text = "00000"
 .Show
 End W
End Sub

ith

50

UserForms

Setting Values to Modify Controls While a Dialog Box is Running
You can set properties and apply methods of controls and the UserForm while a dialog
box is running. The following example sets the text (the Text property) of TextBox1
to "Hello": TextBox1.Text="Hello"

By setting control properties and applying control methods at run time, you can make
changes in a running dialog box in response to a choice the user makes. For example,
if you want a particular control to only be available while a particular check box is
selected, you can write code that enables that control whenever the checkbox is
checked and disables it otherwise.

Enabling a Control
You use the Enabled property of a control to make it available or not:

¾ Text Exercise 6: Enable and disable controls at run time
1. Create a new UserForm. Add a Checkbox control and a Frame control and then

place three Optionbutton controls inside the frame.

2. Double-click the checkbox to access its code window. Place the following in its
Change event procedure:

Private Sub Checkbox1_Change()
 With Me
 If .Checkbox1.Value = True then
 .OptionButton1.Enabled = False
 .OptionButton2.Enabled = False
 .OptionButton3.Enabled = False
 Else
 .OptionButton1.Enabled = True
 .OptionButton2.Enabled = True
 .OptionButton3.Enabled = True
 End If
 End With
End Sub

3. Run the dialog box; select and clear the check box to see how changing its state
enables and disables the three option buttons.

Instead of making the buttons enabled or disabled, you could make them visible or
invisible by toggling the state of the Visible property instead.

Setting the Focus to a Control
The control with the focus is the one that responds to keyboard input from the user.
You set the focus to a control in a dialog box by using the SetFocus method of the
control. For example: Me.Checkbox1.SetFocus

Displaying and Hiding Parts of a Dialog Box
You can set properties or apply methods of the UserForm itself while a dialog box is
running. A common use of this is to expand a UserForm to reveal additional options
when the user clicks a command button.

¾ Test Exercise 7: Resize a UserForm at run time
1. Create a new UserForm. Set the Height property to 180.

2. Add a CommandButton at the top of the form and a CheckBox to the bottom. The
Top property for the checkbox should be at least 120.

51

Automating Office 97/2000

3. Double-Click the userform to view the Code window. Place this code into the
UserForm_Initialize procedure: Me.Height = 120. This will ensure that the control
at the bottom of the dialog box is initially hidden.

4. Place the following code in the CommandButton1_Click procedure:
Me.Height=300-Me.Height

5. Run the example. Clicking the command button should toggle the size of the
window so that the checkbox is alternately displayed and hidden.

Browsing Data with a TabStrip Control
You can use a TabStrip control to view different sets of information in the same set of
controls in a dialog box. For example, if you want to use one area of a dialog box to
display contact information about a group of individuals, you can create a TabStrip
control and then add controls to contain the name, address and phone number of each
person in the group. You can then add a "tab" to the TabStrip control for each
member of the group. After doing this you can write code that will update the controls
to display data about an individual when you select that tab.

To add, remove or rename a tab in a tabstrip, right-click the control and use the
short-cut menu.

The following example changes the value of textBox1 each time a different tab of
TabStrip1 is clicked. The index number of the tab that was clicked is passed to the
event procedure:

Private Sub TabStrip1_Click(ByVal Index as Long)
 If Index = 0 Then
 Me.TextBox1.text = "1, BogTrotter Lane"
 ElseIf Index = 1 Then
 Me.textBox1.Text= "55, Phlegm Close"
 End If
End Sub

Data Validation
There are times when you need to ensure that only data of a certain type are entered
into a particular control. You can check the value entered either when the control
loses the focus or when the dialog box is closed. This example prevents the user from
moving the focus away from the TextBox1 text box without first entering a number:

Private Sub TextBox1_Exit(ByVal Cancel as MSForms.ReturnBoolean)
 If Not IsNumeric(TextBox1.Text) Then
 MsgBox "Please enter a numeric value"
 Cancel = True
 End If
End Sub

Notice that you set the Cancel argument of the control's Exit event procedure to True
to prevent the control losing the focus.

To verify data before a dialog box closes, include code to check the contents of
controls in the same routine that unloads the dialog box. If a control contains invalid
data, use an Exit Sub statement to exit the procedure before the UnLoad statement
can be executed.

52

UserForms

Getting Values When the Dialog Box Closes
Any data that a user enters in a dialog box is lost when the dialog box is closed. If
you return the values of controls in a UserForm after the form has been unloaded, you
get the initial values for the controls rather than any values the user may have
entered.

If you want to save the data entered in a dialog box by a user, you can do so by
saving the information to module-level variables while the dialog box is still running.
The following example displays a dialog box and saves the data that was entered:

'Code in module to declare public variables
Public comment as String

'code in form
Private Sub CommandButton1_Click()
 Module1.comment = TextBox1.Text
 Unload Me
End Sub

'code in module to display form
Sub ShowForm()
 UserForm1.Show
End Sub

Closing a Custom Dialog Box
Dialog boxes are always displayed as modal. This means that the user must close the
dialog box before doing anything else. Use the UnLoad statement to unload a
UserForm when the user indicates that they want to close the dialog box. Typically,
you would provide a command button in the box that can be clicked to close the dialog
box.

Using the Same Dialog Box in Different Applications
Excel, Word and Powerpoint share features for creating custom dialog boxes. You can
create a UserForm in one of these applications and share it with the others.

¾ To share a UserForm with another application:
1. In the VBAEditor for the application in which you created the UserForm, right-click

the UserForm in the Project Explorer, and then click Export File on the shortcut
menu.

2. Choose a name to export the UserForm as, and click Save. The UserForm is saved
with the .frm extension.

3. In the VBAEditor for the other application, right-click the target project and click
Import File on the shortcut menu.

4. Select the name you gave the dialog box when you saved it, and click Open.

Note Not every UserForm can be exported and run in another application - if you
import a UserForm containing Word-specific code into Excel you'll have problems
getting it to work!

NB : For examples, see the sample application DLGTEST.XLS

53

Menus and Toolbars

9. MENUS AND TOOLBARS

An essential part of creating a useful custom application is providing a simple and
consistent way for users to interact with the application. The last section dealt with
dialog boxes, which allow a complex set of options to be presented together. Toolbars
and menus, however, provide quick, convenient and widely accessible ways to expose
commands to the user. Commands for performing related tasks can be grouped
together, separator bars can be used to divide commands into logical groupings.
Submenus and shortcut (popup) menus also offer ways to group related tasks.
Toolbars contain graphic buttons that perform frequently used commands.

In Office 97/2000, menus and toolbars are easy to design and modify - all applications
in the suite share the same basic customisation interface - the Customize dialog box.
Furthermore, because all menus and toolbars are represented by the same type of
object - the CommandBar object - they are easy to customise and control from VBA.

Tools for Modifying the User Interface
There are two tools you can use to customise menus bars and toolbars: the shared
Customize dialog box and VBA. Although the Customize dialog box differs slightly
from one Office application to the next, the programmable objects used to modify
menu bars and toolbars are the same across all applications. This section describes
the Customize dialog box and the shared programmable objects, as well as when and
how to use these tools.

The Customize Dialog Box
The Office applications (excluding Outlook) provide a common interface - the
Customize dialog box - for making design-time changes to your application. In cases
where this method or VBA may be used, the Customize dialog box method is quicker
and easier.

¾ To display the customize dialog box
On the View menu, select Toolbars, then Customize

The following illustration shows the Toolbars tab in the Customize dialog box
displayed by Excel:

55

Automating Office 97/2000

The other Office applications all provide the same basic controls in this dialog box, but
each have additional controls specific to that application.

To modify any built-in or custom dialog box, you follow the same basic procedure
whichever Office application you are using:

1. In the Toolbars box on the Toolbars tab, select the check box next to the name of
the menu bar or toolbar you want to display and modify. When you create a new
menu bar or toolbar, it will be automatically displayed.

2. Click any menu item (including menu and sub-menu captions) or toolbar control to
select it. The command associated with the control doesn't run while the
Customize dialog box is open.

3. Right-click the item or control you've selected to display the shortcut menu
containing the available options.

While the Customize dialog box is open you can rearrange items and controls by
dragging and dropping them, and you can add new items and controls from the
Commands tab.

VBA
In general, to create or modify toolbars, menu bars, and shortcut menus that you
want to deliver with your Visual Basic application, you should use the customisation
features of the container application. Changes made to toolbars, menu bars, and
shortcut menus using the features of the container application are known as "design-
time" changes. For information about using the container application to make design-
time changes, see the online Help for that application.

You can add and modify toolbars, menu bars, and shortcut menus (and their
component parts) by using the CommandBars portion of the Microsoft Office object
model in Visual Basic code. You can write code that runs once to create toolbars and
menu bars; in effect, the code simulates making design-time changes. In some
container applications, however, you may be required to use a combination of this
kind of Visual Basic code and the customisation interface to design your Visual Basic
application. The following are some common areas where you must use a combination
of code and the container application's interface:

•

•

•

If your container application doesn't provide an interface for adding or modifying
edit boxes, drop-down list boxes, or combo boxes on toolbars, you must use Visual
Basic code to add and design one of these controls.

If your container application provides an interface for creating toolbars but doesn't
provide one for creating a new menu bar, you'll need to create a menu bar by
using Visual Basic. After you've created the menu bar in Visual Basic, you can
design menus on that menu bar by using the container application's interface.

If your container application doesn't provide a way to display custom shortcut
menus while the customisation interface is displayed, you must use Visual Basic
code to modify those shortcut menus.

You can also write code that exists in your Visual Basic application to make changes to
toolbars and menu bars while your application is running (for example, you can write
code to disable a command on a menu bar under certain conditions, or to add buttons
to a toolbar in response to a user's actions). Changes brought about by your code
while your Visual Basic application is running are known as "run-time" changes.

56

Menus and Toolbars

9.1: MENUS
The menu system in each Office application is composed of the entire set of menus
and the items on each menu. Each menu is either a menu, a submenu or a shortcut
item. Each menu item is usually either a command or a submenu caption. In this
section, the term component refers to any menu or menu item.

A menu bar is a bar at the top of the active window that displays the manes of all the
menus that are available in that application at any given time. That is, an Office
application can change the menu bar it displays in response to a change in the active
window or in response to a VBA instruction. For example, when you edit an Excel
chart the menu bar containing the charting menus is automatically displayed.

A menu is a list of menu items that appears (drops down) when you click a menu
name on the menu bar.

A submenu (or child menu) is a menu that is attached to the side of another menu
(the parent menu). Each submenu caption is marked by a right-pointing arrow.
Submenus can be added to menus or shortcut menus.

A shortcut menu is a floating menu that contain frequently used commands and
appears when you right-click on an object.

You can modify the menu system in many ways - by creating new menu bars, adding
new menus to built-in or custom menu bars, adding new menu items, adding or
modifying shortcut menus, and assigning macros to menu items. You can also restore
the built-in menu system to its default state.

Using Text Boxes, List Boxes and Combo Boxes
Although you can add built-in or custom text boxes, list boxes or combo boxes to
menus, shortcut menus and submenus, such controls are better suited to toolbars. If
you want to all built-in controls, however, use the same techniques for adding built-in
commands (see Adding and Grouping Commands later in this section). For custom
controls, use the techniques given for adding them to toolbars (see Design-Time
Modifications to Toolbars").

Design-Time Modifications to the Menu System
If you need to create a new menu bar, you can either use the Customize box in
Access or VBA for the other Office applications.

In VBA you use the Add method of the CommandBars collection to create a new
menu bar; the MenuBar argument of the Add method determines whether the
CommandBar object you are creating can be displayed as a menu bar. This example
generates a new menu bar with the name "New Menu":

Set xx = CommandBars.Add(Name:="New Menu", Position:=msoBarTop, _
 MenuBar:=True, Temporary:=False)

Adding Menus
You can add a menu to any built-in or custom menu bar, however, because Office
applications can display different menu bars in different contexts, you may have to
add a command to more than one menu bars to ensure that access to that function is
always available.

To use the design-time method, say in Excel, select Tools, Customize from the
menu. Select the Commands tab and scroll down until you find New Menu and drag
it to your menu bar. When you edit the name of the menu, add an ampersand
character (&) before the character you want to be the shortcut key.

57

Automating Office 97/2000

In VBA you use the Add method of the CommandBarControls collection to add a
menu to the CommandBar object representing a particular menu bar. Setting the
type argument of the Add method to msoControlPopup indicates that the new
control displays a menu - these are known as popup controls. The before argument
indicates the position of the new menu. The Caption property is used to specify the
menu name and access key. The following example adds a new menu named
"Utilities" to the left of the Window menu on the normal worksheet menu bar:

Set xx = CommandBars("Worksheet Menu Bar").Controls _
 .Add(Type:=msoControlPopup, Before:=9)
xx.Caption = "&Utilities"

To remove the menu, you would you this code:

CommandBars("Worksheet Menu Bar").Controls("Utilities").Delete

Adding Menu Items and Sub-menus
This is carried out in a very similar way to the process of adding Menus. The process
of doing this using the Customize box ought to be pretty obvious by now! Using VBA
you would use the Add method of the CommandBarControls collection to add a
submenu to the CommandBar object representing a particular menu. Also, setting
the type argument of the Add method to msoControlPopup indicates that the new
control is a sub-menu. This example adds a menu item "Macro 1" (which runs a
macro called Macro1) and a sub-menu item "More Menus" at the end of the Utilities
menu created above:

Set xx1 = CommandBars("Worksheet Menu Bar").Controls("Utilities") _
 .Controls.Add
xx1.Caption = "Macro &1"
xx1.OnAction = "Macro1"

Set xx2 = CommandBars("Worksheet Menu Bar").Controls("Utilities") _
 .Controls.Add(Type:=msoControlPopup)
xx2.Caption = "&More Macros"

Restoring Built-In Menu Components
You can restore built-in menu components, but not custom ones. Use the Reset
method: e.g.

CommandBars("Worksheet Menu Bar").Controls("Edit").Reset

Run-Time Modifications of the Menu System
In addition to the ability of creating menu components from within VBA, you also have
the ability to enable or disable menu components, or to make them visible or invisible.
You could also rename them dynamically.

Displaying a Custom Menu Bar
To display a custom menu bar instead of the active menu bar, set the Visible
property of the CommandBar object representing the custom bar to True. The
custom bar will automatically replace the default one until you change the visibility
back to False - the default bar is then restored.

58

Menus and Toolbars

Enabling or Disabling Menu Components
Disabled commands can still be seen, but are "greyed out". You can set the Enabled
property of the item to True or False to toggle its state, e.g.

CommandBars("Worksheet Menu Bar").Controls("File") _
 .Controls.Add("Test Control").Enabled = False

If you want to disable all commands on a particular menu, you can disable the menu
itself - the following disables the entire File menu on the worksheet menu bar:

 Commandbars("Worksheet Menu Bar").Controls("File").Enabled = False

59

Automating Office 97/2000

9.2: TOOLBARS
Each Office application provides a system of toolbars containing toolbar controls that
the user can click to gain access to frequently-used commands. Each toolbar can
appear docked at the top, bottom or sides of the application window, or as a floating
window anywhere in the workspace. Each toolbar control is a simple graphical control
with which the user can exchange information with your VBA application.

There are several types of controls that may be used on a toolbar:

The most common type is a simple button control that contains a graphic, called the
button image, visually representing the function of the button. Another type is a
button control that contains a graphic and an attached drop-down palette. The user
clicks the drop-down arrow to display the palette, selects an option on the palette and
then clicks the button control to apply the option. The Font Color button is an
example of this.

A text box, list box or combo box can also be a toolbar control - the Font Name
control is an example of this. This type of control is known as a pop-up control, and
displays a menu of other controls.

Guidelines for Customising Toolbars
You can create new toolbars, add new buttons to existing toolbars, modify the button
image and assign macros, ToolTip text and status bar text to toolbar buttons. In most
cases you can choose whether to do this at design time, using the Customize dialog,
or using VBA at run-time.

You can add menus (pop-up controls) to any built-in or custom toolbar. This is often
easier than customising a toolbar with lots of buttons. For an example, see the Draw
button on the Drawing toolbar. To do this, use the same technique as with adding
these components to menu bars.

You can also add test, list and combo boxes to built-in or custom toolbars. To do this
for built-in text, list and combo boxes, you can use the Customize dialog; for custom
controls you must use VBA.

Adding a Custom Toolbar
These operations are straightforward and obvious using the Customize dialog, so we
will concentrate on the VBA techniques.

You use the Add method of the CommandBars collection to add a new toolbar;
setting the Position argument of the Add method to msoBarLeft, msoBarTop,
msoBarRight, msoBarBottom or msoBarFloating indicates whether the new
toolbar is floating, or docked:

Set xx=CommandBars.Add(Name:="Custom Tools", Position:=msoBarFloating, _
 MenuBar:=False, Temporary:=False)
xx.Visible = True

Adding and Modifying Toolbars
All host applications have an extensive interface for adding and designing custom
toolbars (adding built-in buttons, adding macros as buttons, even adding pop-up
controls to toolbars). The design-time changes you'll usually make from Visual Basic
code are ones that add or modify combo box controls. Otherwise, working with
toolbars in code is almost completely limited to making run-time changes (changing
the button state, changing the button appearance, changing the button action, and so
on).

60

Menus and Toolbars

Making run-time modifications to toolbars
There are several modifications you can make to a toolbar at run time. One of these
modifications is to change the state of a command bar button on the toolbar. Each
button control has two active states: pushed (True) and not pushed (False). To
change the state of a button control, use the appropriate constant for the State
property, as explained in the table later in this topic.

Another modification you can make at run time is to change the appearance or action
of a button. To change the appearance of a button but not its action, use the
CopyFace and PasteFace properties. These properties are useful if you want to copy
the face of a particular button onto the Clipboard or import it into another application
to change some of its features. Use the PasteFace property to transfer the button
image from the Clipboard onto a specific button.

To change a button's action to a function you've developed, assign the custom
procedure name to the button's OnAction property. The following table lists the most
common properties and methods for changing the state, appearance, or action of a
button.

Property or
method

Description

CopyFace,

PasteFace

Copies or pastes the image on the face of a button. Use the CopyFace
method to copy the face of the specified button to the Clipboard. Use the
PasteFace method to paste the contents of the Clipboard onto the face of
the specified button. The PasteFace method will fail if the Clipboard is
empty. If the image on the Clipboard is too large for the button face, the
image won't be scaled down. Generally, it's more convenient to copy and
paste a button face at design time, but you can also make changes to a
button face at run time. You can also use the FaceId property to assign a
different built-in button face to a button.

Id Specifies the value that represents the button's built-in functionality. For
example, a button that copies highlighted text to the Clipboard has an Id
value of 19.

State Specifies the appearance, or state, of the button. Can be one of the
following constants: msoButtonDown, msoButtonMixed, or
msoButtonUp.

Style Specifies whether the button face displays its icon or its caption. Can be
one of the following constants: msoButtonAutomatic, msoButtonIcon,
msoButtonCaption, or msoButtonIconandCaption.

OnAction Specifies the procedure to be run when the user clicks a button, displays a
menu, or changes the contents of combo box controls.

Visible Specifies whether the control is to be displayed or hidden from the user.

Enabled Enables or disables a command bar; the name of a disabled command bar
won't appear in the list of available command bars.

The following example assumes that the first two controls on the CustomButtons
command bar are buttons. The HideThem procedure hides the first button and
assigns a procedure to the OnAction property of the second button. When the
OnAction procedure is run, the first control will be made visible and the second
control will be hidden. If the second button is pressed while the procedure is running,
the procedure will be halted. Note that you must declare both startBtn and stopBtn
as global variables.

Sub HideThem()
 Set v = CommandBars("CustomButtons")
 Set startBtn = v.Controls(1)
 With startBtn

61

Automating Office 97/2000

 .Visible = False
 .Caption = "Stop Processing"
 End With
 Set stopBtn = v.Controls(2)
 stopBt
End Sub

n.OnAction = "onActionButtons"

Sub onActionButtons()
 stopBtn.Visible = False
 With startBtn
 .Visible = True
 .Style = msoButtonCaption
 End With
 Do While startBtn.State <> True
 'Continue processing sub
 Loop
End Sub

Adding and modifying combo box controls
Edit boxes, drop-down list boxes, and combo boxes are powerful new controls you can
add to toolbars in your Visual Basic application. However, most container applications
require that you use Visual Basic code to design these controls. To design a combo
box control, you use the properties and methods described in the following table.

Property or
method

Description

Add Adds a combo box control to a command bar by specifying one of the following
MsoControlType constants for the Type argument: msoControlEdit,
msoControlDropdown, or msoControlComboBox.

AddItem Adds an item to the drop-down list portion of a drop-down list box or combo
box. You can specify the index number of the new item in the existing list, but
if this number is larger than the number of items in the list, AddItem fails.

Caption Specifies the label for the combo box control. This is the label that's displayed
next to the control if you set the Style property to msoComboLabel.

Style Specifies whether the caption for the specified control will be displayed next to
the control. Can be either of the following constants: msoComboLabel (the
label is displayed) or msoComboNormal (the label isn't displayed).

OnAction Specifies the procedure to be run when the user changes the contents of the
combo box control.

The following example adds a combo box with the label "Quarter" to a custom toolbar
and assigns the macro named "ScrollToQuarter" to the control.

Set newCombo=CommandBars("Custom1").Controls.Add(Type:=msoControlComboBox)
With newCombo
 .AddItem "Q1"
 .AddItem "Q2"
 .AddItem "Q3"
 .AddItem "Q4"
 .Style = msoComboNormal
 .OnAction = "ScrollToQuarter"
End With

While your application is running, the procedure assigned to the OnAction property of
the combo box control is called each time the user changes the control. In the
procedure, you can use the ActionControl property of the CommandBars object to
find out which control was changed and to return the changed value. The ListIndex
property will return the item typed or selected in the combo box.

62

Menus and Toolbars

Adding and Grouping Controls
You can add controls to any toolbar and can visually separate them with lines into
groups. The Customize dialog can be used if you wish. Note that you can make a
copy of a pre-existing toolbar button by holding down the CTRL key while you select
and drag it to the desired location. You can also add custom commands (i.e. macros)
to toolbars.

Modifying the Appearance of Toolbar Buttons
The face of a toolbar button can be the image, the name or both - these are set by the
"style" in the Customize dialog. While this dialog is open you can add or modify a
toolbar button image:

To Do this ..
Use a predefined image Right-click the button, point to Change Button Image, and

click the desired image

Copy and paste another
button's image

Right-click the button containing the desired image, click Copy
Button Image, right-click the target button and paste the
copied image.

Copy and paste an image
from a graphics program

Copy via the clipboard (cut & paste). Best to use a 16x16 pixel
image if you can).

Edit the current button's
image

Select Edit Button Image from the right-click menu

Reset a button's image Select Reset Button Image from the right-click menu.

Grouping Controls
You can group commands by inserting separator lines - use the Customize dialog
(the Begin Group) command.

Using VBA
You use the Add method of the CommandBars collection to add a new control to a
toolbar. To add a built-in control, you specify the ID number of that control in the ID
argument of the Add method. This adds the Spelling control to the "Quick Tools"
toolbar:

 Set mySpell = CommandBars("Quick Tools").Controls.Add(Id:=2)

For information about determining the built-in command ID numbers of an Office
application, see "Menu Item and Toolbar Control Ids" later in this section.

To add a custom control, you add a new control and then set the OnAction property
specifying a VBA procedure. Set the type argument of the Add method to
msoControlButton to indicate that the new control is a button, and set the FaceId
value of the control to the ID of a built-in control whose face you want to copy. The
following Excel example adds a button before the Save button on the Standard
toolbar. The procedure "macro1" is executed by the button, and the image is set to
that of a grid (ID 987).

Set xx = CommandBars("Standard").Controls.Add(Type:=msoControlButton, _
 Before:=3)
xx.OnAction:="macro1"
xx.FaceId = 987

There are many properties of the objects that represent toolbar buttons that you can
set in VBA to modify the control's appearance - for more information, see "Style

63

Automating Office 97/2000

Property" and "FaceID" property in on-line Help, as well as the Help topics for other
properties and methods of the CommandBarButton object.

To set a control to begin a group of controls (i.e. to be preceded by a line) just set the
BeginGroup property of the object to True. Use Controls(index), where index is the
caption or index number of a control, to return an object that represents the control.

Adding and Initialising Text Box, List Box and Combo Box Controls
You must use VBA for this purpose. Use the Add method of the
CommandBarControls collection to add one of these components - you specify
exactly which one you want to add using the type argument:

To add this control: Specify this type:
Text box msoControlEdit

List box msoControlDropDown

Combo box msoControlComboBox

Use the Style property of the component to indicate whether the caption should
appear to the left of the box itself.

This example adds a combo box with the label "Colour" to a custom toolbar and
assigns a macro named "GetColour" to it:

Set newCombo=CommandBars("Custom1").Controls.Add(Type:=msoControlComboBox)
With newCombo
 .AddItem "Red"
 .AddItem "Yellow"
 .AddItem "Blue"
 .AddItem "Green"
 .Style= msoComboNormal
 .OnAction="GetColour"
End With

While your VBA application is running, the procedure assigned to the OnAction
property of the combo box control is called each time the user changes the control. In
the procedure you can use the ActionControl property of the CommandBars object
to find out which control was changed and to return the changed value. The
ListIndex property will return the item that was entered into the combo box.

Deleting Toolbar Controls
In VBA, you use the Delete method to delete a custom toolbar or built-in toolbar
control. You cannot delete a built-in toolbar.

CommandBars("Standard").Controls("Print").Delete
CommandBars("Custom Bar").Delete

Restoring Built-in ToolBar Controls
You can restore built-in (but not custom) toolbar controls you have deleted. Use the
Reset method, e.g.

CommandBars("Standard").Reset

64

Menus and Toolbars

Run-Time Modifications to Toolbars
You can program the toolbars you create at design time to respond dynamically to
changing conditions at run time. If a particular control is an inappropriate choice in
certain contexts, you can remove it or disable it. If a control has two possible states,
you can make the control appear pushed down to show it is turned on or appear flat
to show that it is turned off. Obviously, to make run-time changes you must use VBA.

Displaying or Hiding Toolbars and Toolbar Controls
A toolbar takes up screen space that could otherwise be used to display data and you
might choose to hide any non-essential toolbars and/or controls. Visibility is
determined by the Visible property. The following procedure toggles the visibility of
the toolbar every time the user clicks the menu item:

Sub ViewToolBar()
 With CommandBars("Worksheet Menu Bar").Controls("View").Controls("x")
 If .State = msoButtonUp Then
 .State = msoButtonDown
 CommandBars("TargetToolBar").Visible = True
 Else
 .State = msoButtonUp
 CommandBars("targetToolBar").Visible = False
 End If
 End W
End Sub

ith

Restoring a Built-in Toolbar
The Reset method is used for this purpose - the following example resets all the
toolbars to their default state and deletes all custom toolbars:

For Each cb in CommandBars
 If cb.BuiltIn Then
 cb.Reset
 Else
 cb.Delete
 End If
Next

NB Note that not only does Reset restore the built-in toolbars it also returns them to
their original state, so any custom buttons you may have added will be lost!

Enabling or Disabling Toolbar Controls
You may want to control the availability of a toolbar control while your application is
running. If you disable a control it beeps when clicked and does not run its associates
procedure. Use the Enabled property as follows:

CommandBars("Standard").Controls(3).Enabled = False

Indicating the State of Toolbar Buttons
If appropriate, you can make a button appear to be pushed down - use the State
property and toggle its value between msoButtonDown and msoButtonUp.

65

Automating Office 97/2000

Modifying Text Box, List Box and Combo Box Controls
Run-time changes to these controls can be made, using the Text property and the
AddItem and RemoveItem (with an index number) methods as necessary.

Menu Item and Toolbar Control IDs
Each Office application contains a unique set of menu bars and toolbars, and a unique
set of available menu items and toolbar controls. Note that only a sub-set of these
actually appears on any application's built-in menu and tool bars.

Although the functionality associated with each built-in item belongs to a specific
Office application, the caption, button image, size and other default properties are
stored in one shared resource. You use ID numbers to find specific menu items and
toolbar controls in this resource.

Even though this shared resource contains information about the menu items and
toolbar controls in all Office applications, you can only add items whose functionality is
available in the target application. These is no restriction on using the images of the
toolbar controls, however.

To determine the IDs of the built-in menu items and toolbar controls in a specific
Office application, you can do any of the following:

•

•

•

In a module, write code to assign a menu item or toolbar control that already
appears on a menu or toolbar to an object variable, and then use debugging tools
to inspect the object's ID value.

Run the following procedure to create a text document that lists the Ids and
captions of all the built-in commands in that application:

Sub OutputIDs()
 Const maxid = 4000
 Open "c:\ids.txt" for Output as #1
 'create a temporary command bar with every available item
 Set cbr = CommandBars.Add("temporary", msoBarTop, False, True)
 For i = 1 to maxid
 On Error Resume Next
 Cbr.Controls.Add Id:=i
 Next
 On Error Goto 0
 'Write the ID and caption of each control to the output file
 For Each btn in cbr.Controls
 Write #1,btn.Id, btn.Caption
 Next
 'Delete the command Bar and close the output file
 cbr.Delete
 Close
End Sub

#1

Run the following procedure in one of the Office applications to create a set of
custom toolbars that contain as many buttons as there are valid FaceId property
values in Office 97/2000. Each button's image and ToolTip text is set to one of
those values. You can cross-reference the ID of a built-in command to the FaceId
property value of a button on one of these toolbars, and vice versa.

Sub MakeAllFaceIDs()
 'make 14 toolbars, with 300 faces each
 'note that maxid is greater than last valid ID, so error will
 'occur when first invalid ID is used
 Const maxId = 3900

66

Menus and Toolbars

 On Error GoTo realMax
 For bars = 0 to 13
 firstId = bars * 300
 lastId = firstId + 299
 Set tb = CommandBars.Add
 For i = firstId to lastId
 Set btn = tb.Controls.Add
 btn.FaceId = i
 btn.TooltipText = "Faceid = " & i
 Next
 tb.Name = ("Faces " & CStr(firstId) & " to " & Cstr(lastId))
 tb.width = 591
 tb.Visible = True
 Next
 'Delete the button that caused the error and set toolbar name
 realMax:
 btn.Delete
 tb.Name = ("Faces " & CStr(firstId) & " to " & Cstr(i - 1))
 tb.width = 591
 tb.Visible = True
End Sub

Note: the Ids of the pop-up controls for built-in menus are in the range 30002 to
30426. Remember that these Ids return empty copies of the built-in menus.

67

Word Objects

10. WORD OBJECTS

We have so far concentrated on illustrating the use of VBA by means of Excel. Most of
the techniques apply equally to Word, but there are obviously differences, related to
the different object model if that application. In this section, we look at the features
unique to Word.

In previous releases of Office, the macro language for Word was WordBasic, so it may
be of interest for those of you who may be familiar with this language to discover the
main differences between WordBasic and VBA as applied to Word.

Conceptual Differences between VBA and WordBasic
The primary difference between Visual Basic for Applications and WordBasic is that
whereas the WordBasic language consists of a flat list of approximately 900
commands, Visual Basic consists of a hierarchy of objects, each of which exposes a
specific set of methods and properties (similar to statements and functions in
WordBasic). While most WordBasic commands can be run at any time, Visual Basic
only exposes the methods and properties of the available objects at a given time.

Objects are the fundamental building block of Visual Basic; almost everything you do
in Visual Basic involves modifying objects. Every element of Word - documents,
paragraphs, fields, bookmarks, and so on - can be represented by an object in Visual
Basic. Unlike commands in a flat list, there are objects that can only be accessed from
other objects. For example, the Font object can be accessed from various objects
including the Style, Selection, and Find object.

The programming task of applying bold formatting demonstrates the differences
between the two programming languages. The following WordBasic instruction applies
bold formatting to the selection.

Bold 1

The following example is the VBA equivalent for applying bold formatting to the
selection.

Selection.Font.Bold = True

VBA doesn't include a Bold statement and function. Instead, there's a property named
Bold. (A property is usually an attribute of an object, such as its size, its colour, or
whether or not it's bold.) Bold is a property of the Font object. Likewise, Font is a
property of the Selection object that returns a Font object. Following the object
hierarchy, you can build the instruction to apply bold formatting to the selection.

The Bold property is a read/write Boolean property. This means that the Bold
property can be set to True or False (on or off), or the current value can be returned.
The following WordBasic instruction returns a value indicating whether bold formatting
is applied to the selection.

x = Bold()

The following example is the VBA equivalent for returning the bold formatting status
from the selection.

x = Selection.Font.Bold

The Visual Basic thought process
To perform a task in VBA, you need to determine the appropriate object. For example,
if you want to apply character formatting found in the Font dialog box, use the Font
object. Then you need to determine how to "drill down" through the Word object
hierarchy from the Application object to the Font object, through the objects that
contain the Font object you want to modify. After you have determined the path to
your object (for example, Selection.Font), use the Object Browser, Help, or the

69

Automating Office 97/2000

features such as Auto List Members in the VBA Editor to determine what properties
and methods can be applied to the object. For more information about drilling down to
objects using properties and methods, see Understanding objects, properties, and
methods.

Properties and methods are often available to multiple objects in the Word object
hierarchy. For example, the following instruction applies bold formatting to the entire
document.

ActiveDocument.Content.Bold = True

Also, objects themselves often exists in more than one place in the object hierarchy.
For an illustration of the Word object model, see Microsoft Word Objects.

If you know the WordBasic command for the task you want to accomplish in Word
97/2000, see Visual Basic Equivalents for WordBasic Commands in on-line help.

The Selection and Range objects
Most WordBasic commands modify the selection. For example, the Bold command
formats the selection with bold formatting. The InsertField command inserts a field
at the insertion point. Anytime you want to work with the selection in VBA, you use
the Selection property to return the Selection object. The selection can be a block of
text or just the insertion point. The following VBA example inserts text and a new
paragraph after the selection.

Selection.InsertAfter Text:="Hello World"
Selection.InsertParagraphAfter

In addition to working with the selection, you can define and work with various ranges
of text in a document. A Range object refers to a contiguous area in a document with
a starting character position and ending character position. Similar to the way
bookmarks are used in a document, Range objects are used in VBA to identify
portions of a document. However, unlike a bookmark, a Range object is invisible to
the user unless the Range has been selected using the Select method. For example,
you can use VBA to apply bold formatting anywhere in the document without changing
the selection. The following example applies bold formatting to the first 10 characters
in the active document.

ActiveDocument.Range(Start:=0, End:=10).Bold = True

The following example applies bold formatting to the first paragraph.

ActiveDocument.Paragraphs(1).Range.Bold = True

Both of these example change the formatting in the active document without changing
the selection. For more information on the Range object see Working with Range
objects in on-line help.

Word Objects
In this section we will look at the objects specific to Word. Although there will be a
certain amount of overlap with material presented earlier in this booklet, it is worth
providing an initial overview of the object model:

Objects and Collections in Word
In this case, an object represents an element of Word, such as a document, a
paragraph, a bookmark, or a single character. A collection is an object that contains
several other objects, usually of the same type; for example, all the bookmark objects
in a document are contained in a single collection object. Using properties and
methods, you can modify a single object or an entire collection of objects.

70

Word Objects

What is a property?
A property is an attribute of an object or an aspect of its behaviour. For example,
properties of a document include its name, its content, and its save status, as well as
whether change tracking is turned on. To change the characteristics of an object, you
change the values of its properties. To set the value of a property, follow the
reference to an object with a period, the property name, an equal sign, and the new
property value. The following example turns on change tracking in the document
named "MyDoc.doc."

Documents("MyDoc.doc").TrackRevisions = True

In this example, Documents refers to the collection of open documents, and the name
"MyDoc.doc" identifies a single document in the collection. The TrackRevisions
property is set for that single document.

Some properties cannot be set. The Help topic for a property indicates whether that
property can be set (read-write) or can only be read (read-only). You can return
information about an object by returning the value of one of its properties. The
following example returns the name of the active document.

docName = ActiveDocument.Name

In this example, ActiveDocument refers to the document in the active window in
Word. The name of that document is assigned to the variable docName.

Note: The Help topic for each property indicates whether you can set that property
(read-write), only read the property (read-only), or only write the property (write-
only). Also the Object Browser in the VBA Editor displays the read-write status at the
bottom of the browser window when the property is selected.

What is a method?
A method is an action that an object can perform. For example, just as a document
can be printed, the Document object has a PrintOut method. Methods often have
arguments that qualify how the action is performed. The following example prints the
first three pages of the active document.

ActiveDocument.PrintOut From:=1, To:=3

In most cases, methods are actions and properties are qualities. Using a method
causes something to happen to an object, while using a property returns information
about the object or it causes a quality about the object to change.

Returning an object
Most objects are returned via a single object from the collection. For example, the
Documents collection contains the open Word documents. You use the Documents
property of the Application object (the object at the top of the Word object
hierarchy) to return the Documents collection. After you've accessed the collection,
you can return a single object by using an index value in parentheses (this is similar
to how you work with arrays). The index value is usually a number or a name. For
more information, see Returning an Object from a Collection in on-line help.

The following example uses the Documents property to access the Document
collection. The index number is used to return the first document in the Documents
collection. The Close method is then applied to the Document object to close the first
document in the Documents collection.

Documents(1).Close

The following example uses a name (specified as a string) to identify a Document
object within the Documents collection.

Documents("Sales.doc").Close

71

Automating Office 97/2000

Collection objects often have methods and properties that you can use to modify the
entire collection of objects. The Documents object has a Save method that saves all
the documents in the collection. The following example saves the open documents by
applying the Save method.

Documents.Save

The Document object also has a Save method available for saving a single
document. The following example saves the document named Report.doc.

Documents("Report.doc").Save

To return an object that is further down in the Word object hierarchy, you must "drill
down" to it by using properties and methods to return objects. To see how this is
done, open the VBA Editor and click Object Browser on the View menu. Click
Application in the Classes list on the left, then click ActiveDocument from the list
of members on the right. The text at bottom of the Object Browser indicates that
ActiveDocument is a read-only property that returns a Document object. Click
Document at the bottom of the Object Browser; the Document object is
automatically selected in the Classes list, and the Members list displays the
members of the Document object. Scroll through the list of members until you find
Close. Click the Close method. The text at the bottom of the Object Browser
window shows the syntax for the method. For more information about the method,
press F1 or click the Help button to jump to the Close method Help topic.

Given this information, you can write the following instruction to close the active
document.

ActiveDocument.Close SaveChanges:=wdSaveChanges

The following example maximises the active document window.

ActiveWindow.WindowState = wdWindowStateMaximize

The ActiveWindow property returns a Window object that represents the active
window. The WindowState property is set to the maximize constant
(wdWindowStateMaximize).

The following example creates a new document and displays the Save As dialog box
so that a name can be provided for the document.

Documents.Add.Save

The Documents property returns the Documents collection. The Add method
creates a new document and returns a Document object. The Save method is then
applied to the Document object.

As you can see, you use methods or properties to drill down to an object. That is, you
return an object by applying a method or property to an object above it in the object
hierarchy. After you return the object you want, you can apply the methods and
control the properties of that object. To review the hierarchy of objects, see Microsoft
Word Objects in on-line help.

Working with the Application Object
When you start a Word session you automatically create an Application object. You
can use this object to control many of the top level properties of Word. Properties of
the Application object also provide access to lower level objects, such as the
Documents collection.

72

Word Objects

Working with the Document Object
When you open or create a file in Word, you create a Document object. You use
properties and methods of the Document object to open, create, save, activate and
close files.

To open a document, you make use of the Documents collection as follows:

Documents.Open FileName:="C:\docs\xxx.doc"

You can set a variable to point to any open document in this way:

Set thisDoc = Documents("xxx.doc")

If you want to use a numerical index, you specify the position of the document in the
Documents collection, e.g.

Set thisDoc = Documents(1)

.. if it is the first.

Alternatively, you can use the ActiveDocument property to refer to the document
with the focus. The following example displays the name of the active document,
provided there is one:

If Documents.Count > 0 Then
 MsgBox ActiveDocument.Name
Else
 MsgBox "No documents are open"
End if

Opening Documents
To open an existing document, use the Open method as seen above. It is important
to specify the correct path however, or Word will give an error. The following example
looks in the default documents directory for the specified file:

DefaultDir=Options.DefaultFilePath(wdDocumentsPath)
With Application.FileSearch
 .FileName="Test.doc"
 .LookIn = defaultDir
 .Execute
 If .FoundFile.Count = 1 Then
 Documents.Open FileName:=defaultDir & "\test.doc"
 Else
 Msgbox "Test.doc not found"
 End If
End With

Instead of hard-coding the FileName argument of the Open method, you may want a
user to select a file to open. Use the Dialogs property with the wdDialogFileOpen
constant to return a reference to the built-in FileOpen dialog box. The Show method
displays and executes actions performed in the Open dialog:

Dialogs(wdDialogFileOpen).Show

Creating and Saving Documents
Use the Add method of the Documents collection - e.g. Documents.Add

You can also define a variable to refer to this new document :

Set newdoc = Documents.Add

To save a document for the first time, use the SaveAs method, otherwise use Save.

Documents("xxx.doc").Save

If you use the Save method on an unsaved document, the SaveAs dialog will appear
and prompt you for a filename. To save all open documents, apply the Save method

73

Automating Office 97/2000

to the Documents collection. You can also avoid a prompt for a filename by means
of:

Documents.Save NoPrompt:=True

Activating a Document
To make a different document the active document, apply the Activate method to a
Document object.

Set Doc1 = Documents.Open("c:\docs\xx1.doc")
Set Doc2 = Documents.Open("c:\docs\xx2.doc")
Doc2.Activate

Printing a Document
Apply the Printout method to a Document object - e.g. ActiveDocument.PrintOut

To set print options you would normally set via File/Print menu, use the arguments of
the PrintOut method. For options set via the Tools/Options menu (Print tab) you use
properties of the Options object:

Options.PrintHiddenText = True
ActiveDocument.PrintOut Range:=wdPrintFromTo, From:="1", To:="3"

Closing Documents
Apply the Close method to a Document object - e.g. Documents("xx.doc").Close

If there are changes in the document (the document is "dirty") Word displays a
message asking if you want to save the changes. You can choose whether or not to
display this prompt by using the wdDoNotSaveChanges or wdSaveChanges
constant with the SaveChanges argument:

Documents("xx.doc").Close SaveChanges:=wdDoNotSaveChanges

To close all open documents apply Close to the Documents collection:

Documents.Close SaveChanges:=wdDoNotSaveChanges

Accessing Objects in a Document
From the Document object you have access to properties and methods that return
objects contained within. For example, you can access the Tables collection:

MsgBox ActiveDocument.Tables.Count & " tables in this document"
Set myTable = Documents("xx.doc").Tables(1)

Adding Objects to a Document
You can add object using the Add method with a collection objects accessed from the
Document object. For example, the following code adds a 3x3 table at the location
specified by the Range variable myRange :

ActiveDocument.Tables.Add Range:=myRange, NumRows:=3, NumColumns:=3

For a list of collection objects that support the Add method, see "Add Method" in on-
line help.

74

Word Objects

Working With the Range Object
A common task when using Visual Basic is to specify an area in a document and then
do something with it, such as insert text or apply formatting. For example, you may
want to write a macro that locates a word or phrase within a portion of a document.
You can use a Range object to represent the portion of the document can be
represented by a Range object. After the Range object is identified, methods and
properties of the Range object can be applied in order to modify the contents of the
range.

The Range object represents a contiguous area in a document. Each Range object is
defined by a starting and ending character position. Similar to the way bookmarks are
used in a document, Range objects are used in VBA procedures to identify specific
portions of a document, however, unlike a bookmark, a Range object only exists
while the procedure that defined it is running.

Note: Range objects are independent of the selection. That is, you can define and
manipulate a range without changing the selection. You can also define multiple
ranges in a document, while there can be only one selection per pane.

The Start, End and StoryType properties uniquely identify a Range object. The Start
and End properties return or set the starting and ending character positions of the
Range object. The character position at the beginning of the document is zero, the
position after the first character is one, and so on. There are 11 different story types
represented by the WdStoryType constants of the StoryType property.

Using the Range Object Instead of the Selection Object
The macro recorder will often create a macro that uses the Selection property to
manipulate the Selection object, however you can usually accomplish the same task
with fewer instructions using one or more Range objects. The following example was
recorded using the macro recorder - it applies bold formatting to the first two words in
the document:

Selection.Homekey Unit:=wdStory
Selection.MoveRight Unit:=wdWord, Count:=2, Extend:=wdExtend
Selection.Font.Bold = wdToggle

The following code does this using the Range object:

ActiveDocument.Range(Start:=0, _
End:=ActiveDocument.Words(2).End).Bold = True

The following example applies bold formatting to the first two words in the document
and then inserts a new paragraph:

Selection.Homekey Unit:=wdStory
Selection.MoveRight Unit:=wdWord, Count:=2, Extend:=wdExtend
Selection.Font.Bold = wdToggle
Selection.MoveRight Unit:=wdCharacter, Count:=1
Selection.TypeParagraph

and here is the equivalent using the Range object:

Set myRange=ActiveDocument.Range(Start:=0, _
End:=ActiveDocument.Words(2).End)
MyRange.Bold=True
MyRange.InsertParagraphAfter

Both of the preceding examples change the formatting in the active document without
changing the selection. In most cases, Range objects are preferred over Selection
objects for the following reasons:

¾ You can define and use multiple Range objects, whereas you can only have one
Selection object per document window.

75

Automating Office 97/2000

¾ Manipulating Range objects doesn't change the selected text

¾ Manipulating Range objects is faster than working with a selection

Using the Range Method to Return a Range Object
Use the Range method to return a Range object defined by the given starting and
ending character positions. This returns a Range object located in the main story.
The following example returns a Range object that refers to the first 10 characters in
the active document:

Set myRange = ActiveDocument.Range(Start:=0, End:=10)

MyRange refers to the first ten characters in the active document. You can see that
the Range object has been created when you apply a property or method to the
Range object stored in the MyRange variable. The following example applies bold
formatting to the first ten characters in the active document.

Set myRange = ActiveDocument.Range(Start:=0, End:=10)
myRange.Bold = True

When you need to refer to a Range object multiple times, you can use the Set
statement to set a variable equal to the Range object. However, if you only need to
perform a single action on a Range object, there's no need to store the object in a
variable. The same results can be achieved using just one instruction that identifies
the range and changes the Bold property.

ActiveDocument.Range(Start:=0, End:=10).Bold = True

Like a bookmark, a range can span a group of characters or mark a location in a
document. The Range object in the following example has the same starting and
ending points. The range does not include any text. The following example inserts text
at the beginning of the active document.

Set myRange = ActiveDocument.Range(Start:=0, End:=0)
myRange.InsertBefore "Hello "

You can define the beginning and end points of a range using the character position
numbers as shown above, or use the Start and End properties with objects such as
Selection, Bookmark, or Range. The following example creates a Range object
beginning at the start of the second paragraph and ending after the third paragraph.

Set myDoc = ActiveDocument
Set myRange = myDoc.Range(Start:=myDoc.Paragraphs(2).Range.Start, _
 End:=myDoc.Paragraphs(3).Range.End)

For additional information and examples, see the Range method in on-line Help.

Using the Range Property to Return a Range Object
Use the Range property to return a Range object defined by the beginning and end
of another object. The Range property applies to many objects (for example,
Paragraph, Bookmark, and Cell). The following example returns a Range object that
refers to the first paragraph in the active document.

Set aRange = ActiveDocument.Paragraphs(1).Range

The following example returns a Range object that refers to the second through
fourth paragraphs in the active document

Set aRange = ActiveDocument.Range(Start:=
ActiveDocument.Paragraphs(2).Range.Start, _
 End:=ActiveDocument.Paragraphs(4).Range.End)

76

Word Objects

The Range property appears on multiple objects, such as Paragraph, Bookmark,
and Cell, and is used to return a Range object. After you have a Range object, you
can use any of its properties or methods to modify the range. The following example
copies the first paragraph in the active document.

ActiveDocument.Paragraphs(1).Range.Copy

If you need to apply numerous properties or methods to the same Range object, you
can use the With…End With structure. The following example formats the text in the
first paragraph of the active document.

Set myRange = ActiveDocument.Paragraphs(1).Range
With myRange
 .Bold = True
 .ParagraphFormat.Alignment = wdAlignParagraphCenter
 .Font.Name = "Arial"
End With

Modifying Part of a Document
VBA includes these objects you use to modify the corresponding document elements:

This expression .. Returns this object ..
Words(index), Range

Characters(index Range

Sentences(index), Range

Paragraphs(index) Paragraph

Sections(index). Section

When you use these properties without an index, a collection with the same name is
returned - for example, the Paragraphs property returns the Paragraphs collection.
However, if you identify an item within a collection by index, the object in the second
column of the preceding table is returned - for example Words(1) returns a Range
object. You can use any of the range properties or methods to modify a Range
object, as in this example, which copies the first word in the selection to the clipboard:

Selection.Words(1).Copy

Other examples include -
¾ copying the first paragraph in the active document to the clipboard

ActiveDocument.Paragraphs(1).Range.Copy

¾ setting the case of the first word in the active document

ActiveDocument.Words(1).case = wdUpperCase

¾ setting the bottom margin of the first selected section to 0.5 inches.

Selection.Sections(1).PageSetup.BottomMargin = InchesToPoints(0.5)

¾ double-spacing the text in the active document. The Content property returns a
Range object that represents the main document story.

ActiveDocument.Content.ParagraphFormat.Space2

Modifying a Group of Elements
To modify a range of text that consists of a group of document elements, you can
create a Range object that includes them. Using the Start and End properties with a
Range object, you can create a new Range object that refers to a group of document
elements. The following example creates a Range object that refers to the first three
words in the active document and changes their font name to Arial.

77

Automating Office 97/2000

Set Doc = ActiveDocument
Set myRange = Doc.Range(Start:=Doc.Words(1).Start, End:=Doc.Words(3).End)
MyRange.Font.Name = "Arial"

The following example creates a Range object beginning at the start of paragraph 2
and ending after paragraph 3. The ParagraphFormat property is then used to
access paragraph formatting properties:

Set Doc = ActiveDocument
Set myRange = Doc.Range(Start:Doc.Paragraphs(2).Range.Start, _
 End:=Doc.Paragraphs(3).Range.End)
With myRange.ParagraphFormat
 .Space1
 .SpaceAfter = 6
 .SpaceBefore = 6
End With

Returning or Setting the Text in a Range
Use the Text property to return or set the contents of a Range object. This returns
the first word in the active document:

strText = ActiveDocument.Words(1).Text

This changes the first word in the active document to "Hello"

ActiveDocument.Words(1).Text = "Hello"

Use the InsertAfter or InsertBefore methods to insert text before or after a range.
The following example inserts text at the beginning of the second paragraph in the
active document:

ActiveDocument.Paragraphs(2).Range.InsertBefore Text:="In the beginning .."

After using the InsertAfter or InsertBefore methods the range expands to include
the new text. If you do not want to do this, use the Collapse method afterwards:

With ActiveDocument.Paragraphs(2).Range
 .InsertBefore Text:="Hello"
 .Collapse Direction:=wdCollapseStart
End With

Formatting the Text in a Range
Use the Font property to get character -formatting properties and methods, and the
ParagraphFormat property to get to paragraph-formatting properties and methods.
For example:

With ActiveDocument.Paragraphs(1).Range.Font
 .Name = "Times New Roman"
 .Size = 14
 .AllCaps = True
End With
With ActiveDocument.Paragraphs(1).Range.ParagraphFormat
 .LeftIndent = InchesToPoints(0.5)
 .Space1
End With

78

Word Objects

Redefining a Range Object
Use the SetRange method to redefine an existing Range object. The following
example defines myRange to the current selection. The SetRange method redefines
myRange so that it refers to current selection plus the next ten characters.

Set myRange = Selection.Range
myRange.SetRange Start:=myRange.Start, End:=myRange.End + 10

You can also redefine a Range object by changing the values of Start and End, or by
using the MoveStart or MoveEnd methods. For example:

Set myRange = Selection.Range
MyRange.End = myRange.End + 10

Set myRange = ActiveDocument.Paragraphs(2)
MyRange.MoveEnd Unit:=wdParagraph, Count:=1

Looping Through a Range of Paragraphs
There are two main ways of doing this:
Using the For Each .. Next Statement
This example loops through the first 5 paragraphs in the active document, adding text
before each of them:

Set myDoc = ActiveDocument
Set myRange = myDoc.Range(Start:=myDoc.Paragraphs(1).Range.Start, _
 End:=myDoc.Paragraphs(5).Range.End)
For Each para in myRange.Paragraphs
 Para.Range.InsertBefore "Question: " & vbTab
Next para

Using the Next Property or Method
The Next method redefines a range to refer to the next item or object in the class:

Set myRange = myRange.Paragraphs(1).Next.Range

Working With Stories
A story is a document area that contains a range of text distinct from other areas of
text in a document. For example, if a document includes body text, footnotes, and
headers, it contains a main text story, footnotes story, and headers story.

There are 11 different types of stories that can be part of a document, corresponding
to the following WdStoryType constants: wdCommentsStory, wdEndnotesStory,
wdEvenPagesFooterStory, wdEvenPagesHeaderStory,
wdFirstPageFooterStory, wdFirstPageHeaderStory, wdFootnotesStory,
wdMainTextStory, wdPrimaryFooterStory, wdPrimaryHeaderStory, and
wdTextFrameStory. The StoryRanges collection contains the first story for each
story type available in a document. Use the NextStoryRange method to return
subsequent stories.

Use the StoryType property to return the story type for the specified range, selection
or bookmark. The following example closes the footnote pane in the active window if
the selection is contained in the footnote story:

ActiveWindow.View.Type = wdNormalView
If Selection.StoryType = wdFootNotesStory Then _
 ActiveWindow.ActivePane.Close

79

Automating Office 97/2000

Working With the Selection Object
When you work on a document in Word, you usually select text and then perform an
action, such as formatting the text or typing text. In VBA, it is usually not necessary
to select text before modifying the text. Instead, you create a Range object that
refers to a specific portion of the document. However, when you want your code to
respond to or change the selection, you can do so with the Selection object.

The Select method activates an object. For example, the following instruction selects
the first word in the active document.

ActiveDocument.Words(1).Select

For more Select method examples, see the Select method or "Selecting text in a
document" in Online Help.

The Selection property returns a Selection object that represents the active
selection in a document window pane. There can only be one Selection object per
document window pane and only one Selection object can be active. For example,
the following example changes the paragraph formatting of the paragraphs in the
selection.

Selection.Paragraphs.LeftIndent = InchesToPoints(0.5)

The following example inserts the word "Hello" after the selection.

Selection.InsertAfter Text:="Hello"

The following example applies bold formatting to the selected text.

Selection.Font.Bold = True

The macro recorder will often create a macro that uses the Selection property. The
following macro, created using the macro recorder, applies bold formatting to the first
two words in the document.

Selection.HomeKey Unit:=wdStory
Selection.MoveRight Unit:=wdWord, Count:=2, Extend:=wdExtend
Selection.Font.Bold = wdToggle

The following example accomplishes the same task without using the Selection
property.

ActiveDocument.Range(Start:=0, _
End:=ActiveDocument.Words(2).End).Bold = True

Moving and Extending the Selection
The Selection object also includes various methods you can use to expand or move
an existing selection. For example, the MoveDown method has an Extend argument
that you can set to wdExtend. The following example selects the next three
paragraphs in the active window.

With Selection
 .StartOf Unit:=wdParagraph, Extend:=wdMove
 .MoveDown Unit:=wdParagraph, Count:=3, Extend:=wdExtend
End With

Or
Selection.MoveDown Unit:=wdParagraph, Count:=1, Extend:=wdMove

The next example extends the selection by moving the end position to the end of the
paragraph:

Selection.MoveEnd Unit:=wdParagraph, Count:=1

Because there can be only one selection in a document window or pane, you can also
move the selection by selecting another object. You can also move the selection by

80

Word Objects

using the GoToNext, GoToPrevious, or GoTo method. The next example moves the
selection to the fourth line in the document:

Selection.GoTo What:=wdGoToLine, Which:=wdGoToAbsolute, Count:=4

Properties and Methods of the Selection Object
This section highlights some commonly used methods and properties of the Selection
object.

Returning or Setting the Text in the Selection
Use the Text property:

strText = Selection.Text
Selection.Text = "Hello World"
Selection.InsertBefore Text:="This is some text ..."

Formatting the Selected Text
Use the Font property:

With Selection.Font
 .Name = "Times New Roman"
 .Size = 14
End With

Returning a Range Object
If a method or property is available from the Range object but not from the
Selection object, use the Range property :-

Selection.Range.CheckSpelling

Returning Information About the Selection
Use the Information property. There are 35 different constants that you can use to
return different types of information about the selection. If the selection is in a table,
for instance, the following example displays the number of rows and columns in the
table:

If Selection.Information(wdWithinTable) = True Then
 MsgBox "Columns = " & Selection.Information(wdMaximumNumberOfColumns) _
 & vbCr & "Rows = " & selection.Information(wdMaximumNumberOfRows)
End If

The table below gives a complete list of the constants you can use with the
Information property:

Constant Function
wdActiveEndAdjustedPageNumber Returns the number of the page that contains the active end of the

specified selection or range. If you set a starting page number or
make other manual adjustments, returns the adjusted page number
(unlike wdActiveEndPageNumber)

wdActiveEndPageNumber Returns the number of the page that contains the active end of the
specified selection or range, counting from the beginning of the
document. Any manual adjustments to page numbering are
disregarded (unlike wdActiveEndAdjustedPageNumber).

wdActiveEndSectionNumber Returns the number of the section that contains the active end of
the specified selection or range.

Returns True if the specified selection or range is at the end-of-row
mark in a table.

wdCapsLock Returns True if Caps Lock is in effect.

wdEndOfRangeColumnNumber Returns the table column number that contains the end of the
specified selection or range.

wdAtEndOfRowMarker

81

Automating Office 97/2000

wdEndOfRangeRowNumber Returns the table row number that contains the end of the specified
selection or range.

wdFirstCharacterColumnNumber Returns the character position of the first character in the specified
selection or range. If the selection or range is collapsed, the
character number immediately to the right of the range or selection
is returned (this is the same as the character column number
displayed in the status bar after "Col")

wdFirstCharacterLineNumber Returns the line number of the first character in the selection. If the
Pagination property is False or the Draft property is True, returns –
 1.

wdFrameIsSelected Returns True if the selection or range is an entire frame or text box

wdHeaderFooterType Returns a value that indicates the type of header or footer that
contains the specified selection or range, as shown in the following
table:
Value Type of header or footer
 – 1 None (the selection or range isn't in a header or
 footer)
0 (zero) Even page header
1 Odd page header (or the only header, if there aren't
 odd and even headers)
2 Even page footer
3 Odd page footer (or the only footer, if there aren't odd
 and even footers)
4 First page header
5 First page footer

wdHorizontalPositionRelativeToPage Returns the horizontal position of the specified selection or range;
this is the distance from the left edge of the selection or range to the
left edge of the page, in twips (20 twips = 1 point, 72 points = 1
inch). If the selection or range isn't within the screen area, returns
 – 1

wdHorizontalPositionRelativeToTextBoundary Returns the horizontal position of the specified selection or
range, relative to the left edge of the nearest text boundary
enclosing it, in twips (20 twips = 1 point, 72 points = 1
inch). If the selection or range isn't within the screen area,
returns – 1

wdInClipboard Returns True if the specified selection or range is on the Macintosh
Clipboard

wdInCommentPane Returns True if the specified selection or range is in a comment pane

wdInEndnote Returns True if the specified selection or range is in an endnote area in
page layout view or in the endnote pane in normal view

wdInFootnote Returns True if the specified selection or range is in a footnote area in
page layout view or in the footnote pane in normal view

wdInFootnoteEndnotePane Returns True if the specified selection or range is in the footnote or
endnote pane in normal view or in a footnote or endnote area in page
layout view. For more information, see the descriptions of wdInFootnote
and wdInEndnote in the preceding paragraphs

wdInHeaderFooter Returns True if the selection or range is in the header or footer pane or in
a header or footer in page layout view

wdInMasterDocument Returns True if the selection or range is in a master document (that is, a
document that contains at least one subdocument)

wdInWordMail Returns a value that indicates the WordMail location of the selection or
range, as shown in the following table
Value WordMail Location
0(zero) The selection or range isn't in a WordMail message.
1 The selection or range is in a WordMail send note.
2 The selection or range is in a WordMail read note.

wdMaximumNumberOfColumns Returns the greatest number of table columns within any row in the
selection or range.

wdMaximumNumberOfRows Returns the greatest number of table rows within the table in the
specified selection or range

wdNumberOfPagesInDocument Returns the number of pages in the document associated with the
selection or range.

wdNumLock Returns True if NumLock is in effect

wdOverType Returns True if overtype mode is in effect. The Overtype property can be
used to change the state of overtype mode

wdReferenceOfType Returns a value that indicates where the selection is in relation to a
f t t d t t f h i th f ll i t bl

82

Word Objects

footnote, endnote, or comment reference, as shown in the following table
Value Description
 – 1 The selection or range includes but isn't limited to a footnote,
 endnote, or comment reference.
0 (zero) The selection or range isn't before a footnote, endnote, or
 comment reference.
1 The selection or range is before a footnote reference.
2 The selection or range is before an endnote reference.
3 The selection or range is before a comment reference.

wdRevisionMarking Returns True if change tracking is in effect

wdSelectionMode Returns a value that indicates the current selection mode, as shown in the
following table
Value Selection mode
0 (zero) Normal selection
1 Extended selection ("EXT" appears on the status bar)
2 Column selection. ("COL" appears on the status bar)

wdStartOfRangeColumnNumber Returns the table column number that contains the beginning of the
selection or range

wdStartOfRangeRowNumber Returns the table row number that contains the beginning of the selection
or range.

wdVerticalPositionRelativeToPage Returns the vertical position of the selection or range; this is the
distance from the top edge of the selection to the top edge of the page,
in twips (20 twips = 1 point, 72 points = 1 inch). If the selection isn't
visible in the document window, returns – 1

wdVerticalPositionRelativeToTex
tBoundary

Returns the vertical position of the selection or range, relative to the top
edge of the nearest text boundary enclosing it, in twips (20 twips = 1
point, 72 points = 1 inch). This is useful for determining the position of
the insertion point within a frame or table cell. If the selection isn't
visible, returns – 1

wdWithInTable Returns True if the selection is in a table

wdZoomPercentage Returns the current percentage of magnification as set by the Percentage
property

Determining Whether Text is Selected
Use the Type property to set or return the way you want the selection to be indicated
in your document. For instance you can use the wdSelectionBlock constant to
determine whether a block of text is selected. The following example selects the
paragraph that contains the insertion point if the selection is an insertion point:

If Selection.Type = wdSelectionIP Then
 Selection.Paragraphs(1).Range.Select
End If

Working With the Find and Replacement Objects
Finding and replacing is exposed by the Find and Replacement objects. The Find
object is available from the Selection and Range object. The find action differs
slightly depending upon whether you access the Find object from the Selection or
Range object.

Finding text and selecting it
If the Find object is accessed from the Selection object, the selection is changed
when the find criterion is found. The following example selects the next occurrence of
the word "Hello." If the end of the document is reached before the word "Hello" is
found, the search is stopped.

With Selection.Find
 .Forward = True
 .Wrap = wdFindStop
 .Text = "Hello"

83

Automating Office 97/2000

 .Execute
End With

The Find object includes properties that relate to the options in the Find and
Replace dialog box (choose Find from the Edit menu). You can set the individual
properties of the Find object or use arguments with the Execute method as shown in
the following example.

Selection.Find.Execute FindText:="Hello", Forward:=True, Wrap:=wdFindStop

Finding text without changing the selection
If the Find object is accessed from a Range object, the selection is not changed but
the Range is redefined when the find criterion is found. The following example locates
the first occurrence of the word "blue" in the active document. If the find operation is
successful, the range is redefined and bold formatting is applied to the word "blue."

With ActiveDocument.Content.Find
 .Text = "blue"
 .Forward = True
 .Execute
 If .Found = True Then .Parent.Bold = True
End With

The following example performs the same result as the previous example using
arguments of the Execute method.

Set myRange = ActiveDocument.Content
myRange.Find.Execute FindText:="blue", Forward:=True
If myRange.Find.Found = True Then myRange.Bold = True

Using the Replacement object
The Replacement object represents the replace criteria for a find and replace
operation. The properties and methods of the Replacement object correspond to the
options in the Find and Replace dialog box (Edit menu).

The Replacement object is available from the Find object. The following example
replaces all occurrences of the word "hi" with "hello." The selection changes when the
find criterion is found because the Find object is accessed from the Selection object.

With Selection.Find
 .ClearFormatting
 .Text = "hi"
 .Replacement.ClearFormatting
 .Replacement.Text = "hello"
 .Execute Replace:=wdReplaceAll, Forward:=True, Wrap:=wdFindContinue
End With

The following example removes bold formatting in the active document. The Bold
property is True for the Find object and False for the Replacement object. In order
to find and replace formatting, set the find and replace text to empty strings ("") and
set the Format argument of the Execute method to True. The selection remains
unchanged because the Find object is accessed from a Range object (the Content
property returns a Range object).

With ActiveDocument.Content.Find
 .ClearFormatting
 .Font.Bold = True
 With .Replacement
 .ClearFormatting
 .Font.Bold = False
 End With
 .Execute FindText:="", ReplaceWith:="", Format:=True,
Replace:=wdReplaceAll

84

Word Objects

End With

Working with Table, Column, Row and Cell Objects
The Word object model includes and object for tables as well as objects for the various
elements of a table. Use the Tables property of the Document, Range or Selection
object to return the Tables collection. The following example converts the first table
in the selection to text:

If Selection.Tables.Count > 0 Then
 Selection.Tables(1).ConvertToText Separator:=wdSeparateByTabs
End If

Use the Cells property with the Column, Range, Row or Selection object to return
the Cells collection. E.g.

Set myCell = ActiveDocument.Tables(1).Cell(Row:=1, Column:=1)

Inserting text into a table cell
The following example inserts text into the first cell of the first table in the active
document. The Cell method returns a single Cell object. The Range property returns
a Range object. The Delete method is used to delete the existing text and the
InsertAfter method inserts the "Cell 1,1" text.

If ActiveDocument.Tables.Count >= 1 Then
 With ActiveDocument.Tables(1).Cell(Row:=1, Column:=1).Range
 .Delete
 .InsertAfter Text:="Cell 1,1"
 End With
End If

Creating a table, inserting text, and applying formatting
The following example inserts a 4 column, 3 row table at the beginning of the
document. The For Each...Next structure is used to step through each cell in the
table. Within the For Each...Next structure, the InsertAfter method is used to add
text to the table cells (Cell 1, Cell 2, and so on).

Set oDoc = ActiveDocument
Set oTable = oDoc.Tables.Add(Range:=oDoc.Range(Start:=0, End:=0), _
NumRows:=3, NumColumns:=4)
iCount = 1
For Each oCell In oTable.Range.Cells
 oCell.Range.InsertAfter "Cell " & iCount
 iCount = iCount + 1
Next oCell
oTable.AutoFormat Format:=wdTableFormatColorful2, _
 ApplyBorders:=True, ApplyFont:=True, ApplyColor:=True

Returning text from a table cell without returning the end of cell marker
The following 2 examples return and display the contents of each cell in the first row
of the first document table.

Set oTable = ActiveDocument.Tables(1)
For Each aCell In oTable.Rows(1).Cells
 Set myRange = ActiveDocument.Range(Start:=aCell.Range.Start, _
 End:=aCell.Range.End - 1)
 MsgBox myRange.Text
Next aCell

Set oTable = ActiveDocument.Tables(1)

85

Automating Office 97/2000

For Each aCell In oTable.Rows(1).Cells
 Set myRange = aCell.Range
 myRange.MoveEnd Unit:=wdCharacter, Count:=-1
 MsgBox myRange.Text
Next aCell

Converting existing text to a table
The following example inserts tab-delimited text at the beginning of the active
document and then converts the text to a table.

Set oRange1 = ActiveDocument.Range(Start:=0, End:=0)
oRange1.InsertBefore "one" & vbTab & "two" & vbTab & "three" & vbCr
Set oTable1 = oRange1.ConvertToTable(Separator:=Chr(9), NumRows:=1, _
NumColumns:=3)

Returning the contents of each table cell
The following example defines an array equal to the number of cells in the first
document table (assuming Option Base 1). The For Each...Next structure is used to
return the contents of each table cell and assign the text to the corresponding array
element.

If ActiveDocument.Tables.Count >= 1 Then
 Set oTable = ActiveDocument.Tables(1)
 iNumCells = oTable.Range.Cells.Count
 ReDim aCells(iNumCells)
 i = 1
 For Each oCell In oTable.Range.Cells
 Set myRange = oCell.Range
 myRange.MoveEnd Unit:=wdCharacter, Count:=-1
 aCells(i) = myRange.Text
 i = i + 1
 Next oCell
End If

Copying all tables in the active document into a new document
This example copies the tables from the current document into a new document.

If ActiveDocument.Tables.Count >= 1 Then
 Set oDoc1 = ActiveDocument
 Set MyRange = Documents.Add.Range(Start:=0, End:=0)
 For Each oTable In oDoc1.Tables
 oTable.Range.Copy
 With MyRange
 .Paste
 .Collapse Direction:=wdCollapseEnd
 .InsertParagraphAfter
 .Collapse Direction:=wdCollapseEnd
 End With
 Next
End If

86

Word Objects

Working With Other Common Objects

Using the HeaderFooter Object
The HeaderFooter object can represent either a header or a footer.

Use Headers(index) or Footers(index), where index is one of the
WdHeaderFooterIndex constants (wdHeaderFooterEvenPages,
wdHeaderFooterFirstPage, or wdHeaderFooterPrimary), to return a single
HeaderFooter object. The following example changes the text of both the primary
header and the primary footer the first section of the active document.

With ActiveDocument.Sections(1)
 .Headers(wdHeaderFooterPrimary).Range.Text = "Header text"
 .Footers(wdHeaderFooterPrimary).Range.Text = "Footer text"
End With

You can also return a single HeaderFooter object by using the HeaderFooter
property with a Selection object.

Note: You cannot add HeaderFooter objects to the HeaderFooters collection.

Use the DifferentFirstPageHeaderFooter property with the PageSetup object to
specify a different first page. The following example inserts text into the first page
footer in the active document.

With ActiveDocument
 .PageSetup.DifferentFirstPageHeaderFooter = True
 .Sections(1).Footers(wdHeaderFooterFirstPage).Range.InsertBefore _
 "Written by Joe Smith"

End With

Use the OddAndEvenPagesHeaderFooter property with the PageSetup object to
specify different odd and even page headers and footers. If the
OddAndEvenPagesHeaderFooter property is True, you can return an odd header or
footer by using wdHeaderFooterPrimary, and you can return an even header or
footer by using wdHeaderFooterEvenPages.

Use the Add method with the PageNumbers object to add a page number to a
header or footer. The following example adds page numbers to the primary footer the
first section of the active document.

With ActiveDocument.Sections(1)
 .Footers(wdHeaderFooterPrimary).PageNumbers.Add
End With

Using FormFields Objects
You can create a Word online form that includes check boxes, text boxes and drop-
down list boxes. The corresponding VBA objects are CheckBox, TextInput and
DropDown. All these objects can be returned from any FormField object in the
FormFields collection.

Using the FormFields Collection
Use the FormFields property to return the FormFields collection. The following
example counts the number of text box form fields in the active document.

For Each aField In ActiveDocument.FormFields
 If aField.Type = wdFieldFormTextInput Then count = count + 1
Next aField
MsgBox "There are " & count & " text boxes in this document"

87

Automating Office 97/2000

Use the Add method with the FormFields object to add a form field. The following
example adds a check box at the beginning of the active document and then selects
the check box.

Set ffield = ActiveDocument.FormFields.Add(_
 Range:=ActiveDocument.Range(Start:=0,End:=0),
Type:=wdFieldFormCheckBox)
ffield.CheckBox.Value = True

Use FormFields(index), where index is a bookmark name or index number, to return
a single FormField object. The following example sets the result of the Text1 form
field to "xxx."

ActiveDocument.FormFields("Text1").Result = "xxx"

The index number represents the position of the form field in the selection, range, or
document. The following example displays the name of the first form field in the
selection.

If Selection.FormFields.Count >= 1 Then
 MsgBox Selection.FormFields(1).Name
End If

Use the Add method with the FormFields object to add a form field. The following
example adds a check box at the beginning of the active document and then selects
the check box.

Set ffield = ActiveDocument.FormFields.Add(_
 Range:=ActiveDocument.Range(Start:=0, End:=0), Type:=wdFieldFormCheckBox)
ffield.CheckBox.Value = True

Use the CheckBox, DropDown, and TextInput properties with the FormField
object to return the CheckDown, DropDown, and TextInput objects. The following
example selects the check box named "Check1."

ActiveDocument.FormFields("Check1").CheckBox.Value = True

Modifying Word Commands
You can modify most Word commands by turning them into macros. For example, you
can modify the Open command on the File menu so that instead of displaying a list of
Word document files (in Windows, files ending with the .DOC file name extension),
Word displays every file in the current folder.

To display the list of built-in Word commands in the Macro dialog box, you select
Word Commands in the Macros In box. Every menu command and every command
available on a toolbar or through shortcut keys is listed. Menu commands begin with
the menu name associated with the command. For example, the Save command on
the File menu is listed as FileSave.

You can replace a Word command with a macro by giving a macro the same name as
a Word command. For example, if you create a macro named "FileSave," Word runs
the macro when you choose Save from the File menu, click the Save toolbar button,
or press the FileSave shortcut key combination.

This example takes you through the steps needed to modify the FileSave command.

¾ To modify a Word command
1 On the Tools menu, point to Macro, and then click Macros.

2 In the Macros In box, select Word Commands.

3 In the Macro Name box, select the Word command to modify (e.g FileSave).

4 In the Macros In box, select a template or document location to store the macro.
For example, select Normal.dot (Global Template) to create a global macro (the

88

Word Objects

FileSave command will be automatically modified for all documents).

5 Click the Create button.

The VBA editor opens with module displayed that contains a new procedure whose
name is the same as the command you clicked. If you clicked the FileSave
commans, the FileSave macro appears as shown below:

Sub FileSave()
 ' Saves the active document or template
 Activ
End Sub

eDocument.Save

You can add additional instructions or remove the existing ActiveDocument.Save
instruction. Now every time the FileSave command runs, your FileSave macro runs
instead of the word command. To restore the original FileSave functionality, you need
to rename or delete your FileSave macro.

Note: You can also replace a Word command by creating a code module named after a Word
command (for example, FileSave) with a subroutine named Main.

Working With Events
An event is an action that is recognised by an object (such as opening a document or
quitting an application) and for which you can write code to provide a response.

Document Events
The Document object supports three events: Close, New and Open. You write
procedures to respond to these events in the class module named "ThisDocument."
Use the following steps to create an event procedure.

1 Under your Normal project or document project in the Project Explorer window,
double-click ThisDocument. (In Folder view, ThisDocument is located in the
Microsoft Word Objects folder.)

2 Select Document from the Object drop-down list box.

3 Select an event from the Procedure drop-down list box. An empty subroutine is
added to the class module.

4 Add the Visual Basic instructions you want to run when the event occurs.

The following example shows a New event procedure in the Normal project that will
run when a new document based on the Normal template is created.

Private Sub Document_New()
 MsgBox "New document was created"
End Sub

The following example shows a Close event procedure in a document project that
runs only when that document is closed.

Private Sub Document_Close()
 MsgBox "Closing the document"
End Sub

Unlike auto macros, event procedures in the Normal template don't have a global
scope. For example, event procedures in the Normal template only occur if the
attached template is the Normal template.

If an auto macro exists in a document and the attached template, only the auto macro
stored in the document will execute. If an event procedure for a Document event
exists in a document and its attached template, both event procedures will run.

89

Automating Office 97/2000

ActiveX Control Events
Word implements the LostFocus and GotFocus events for ActiveX controls in a Word
document. The other events listed in the Procedure drop-down list box in are
documented in Microsoft Forms Help

The following example shows a LostFocus event procedure that runs when the focus
is moved away from CheckBox1. The macro displays the state of CheckBox1 using
the Value property (True for selected and False for clear).

Private Sub CheckBox1_LostFocus()
 MsgBox CheckBox1.Value
End Sub

Application Events
Application events occur when the user quits the application or the focus is shifted to
another document. Unlike document and ActiveX control events, however, the
Application object events are not enabled by default. To create an event handler for
an event of the Application object, you need to complete the following three steps:

1 Declare an object variable in a class module to respond to the events.

Before you can write procedures for the events of the Application object, you
must create a new class module and declare an object of type Application with
events. For example, assume that a new class module is created and called
EventClassModule. The new class module contains the following code.

Public WithEvents App As Word.Application

2 Write the specific event procedures.

After the new object has been declared with events, it appears in the Object
drop-down list box in the class module, and you can write event procedures for
the new object. (When you select the new object in the Object box, the valid
events for that object are listed in the Procedure drop-down list box.) Select an
event from the Procedure drop-down list box; an empty procedure is added to
the class module.

Private Sub App_DocumentChange()
End Sub

3 Initialize the declared object from another module.

Before the procedure will run, you must connect the declared object in the class
module (App in this example) with the Application object. You can do this with
the following code from any module (EventClassModule is the name of the new
class module you created for this purpose).

Dim X As New EventClassModule
Sub Register_Event_Handler()
 Set X.App = Word.Application
End Sub

Run the Register_Event_Handler procedure. After the procedure is run, the App object
in the class module points to the Word Application object, and the event procedures
in the class module will run when the events occur.

After you have enabled events for the Application object, you can create event
procedures for the events described in the following table:

90

Word Objects

Event Description

DocumentChange Occurs when a new document is created, when an existing
document is opened or when another document is made the
active document.

Quit Occurs when the user quits Word.

Using Auto Macros
By giving a macro a special name, you can run it automatically when you perform an
operation such as starting Word or opening a document. Word recognises the
following names as automatic macros, or "auto" macros.

Macro name When it runs
AutoExec When you start Word or load a global template

AutoNew Each time you create a new document

AutoOpen Each time you open an existing document

AutoClose Each time you close a document

AutoExit When you quit Word or unload a global template

Auto macros in code modules are recognised if either of the following conditions are
true.

¾ The module is named after the auto macro (for example, AutoExec) and it contains
a procedure named "Main."

¾ A procedure in any module is named after the auto macro.

Just like other macros, auto macros can be stored in the Normal template, another
template, or a document. The only exception is the AutoExec macro, which will not
run automatically unless it is stored in the Normal template or a global template
stored in the folder specified as the Startup folder.

In the case of a naming conflict (multiple auto macros with the same name), Word
runs the auto macro stored in the closest context. For example, if you create an
AutoClose macro in a document and the attached template, only the auto macro
stored in the document will execute. If you create an AutoNew macro in the normal
template, the macro will run if a macro named AutoNew doesn't exist in the
document or the attached template.
Note:
You can hold down the SHIFT key to prevent auto macros from running. For example, if you create
a new document based on a template that contains an AutoNew macro, you can prevent the
AutoNew macro from running by holding down SHIFT when you click OK in the New dialog box
(File menu) and continuing to hold down SHIFT until the new document is displayed. In a macro
that might trigger an auto macro, you can use the following instruction to prevent auto macros from
running.

WordBasic.DisableAutoMacros

91

Using DLLs and the Windows API

11. INTERACTING WITH OTHER APPLICATIONS

In addition to working with Word or Excel data and functions you may want your
application to exchange data with other Office applications, or a program you have
written yourself. There are several ways to communicate with other applications,
including OLE automation, dynamic data exchange DDE and dynamic-link libraries
(DLLs).

Using Automation

Automation (previously known as OLE Automation) allows you to retrieve, edit and
export data by referencing another application’s objects, properties and methods.
Objects that can be returned from outside the application are called Automation
objects. An application that exposes its Automation objects to other applications is
called an server application. An application that can access and manipulate
Automation objects is called an automation controller.

To exchange data with another application by using Automation while working in
Excel, say, you first create a reference to the application you want to communicate
with (the server). You then add, change or delete information using the server’s
objects, properties and methods. When you have finished using the server, you close
it from within the controller application.

In more detail, the process involves three steps:

1. The first step towards making, say, Word available to another application for
Automation is to create a reference to the Word type library. This is done in the
VBA Editor by selecting References from the Tools menu, and selecting the check
box next to Microsoft Word 8.0 Object Library.

2. The second step is to declare an object variable that will refer to the Word
Application object, as in this example:

Dim appWD as Word.Application.8

3. The third step is to use the VBA CreateObject or GetObject function with the
Word OLE Programmatic Identifier (Word.Application.8 or Word.Document.8), as
shown below (setting the visibility to True allows you to see the instance of
Word):

Set appWD = CreateObject("Word.Application.8")
AppWd.Visible = True

The CreateObject function returns a Word Application object and assigns it to
appWd. Using the objects, properties and methods of the Word Application object,
you can control Word. The following example creates a new Word document:

AppWd.Documents.Add

The CreateObject function starts a Word session that Automation will not close when
the object variable that references the Application object expires. Setting the object
reference to the Nothing keyword will not close Word either - you must use the Quit
method. The following Excel example inserts data from cells A1:B10 on Sheet1 into a
new Word document and then arranges the data in a table. The example uses the
Quit method to close the new instance of Word if the CreateObject function was
used. If the GetObject function returns error 429 (no instance of Word running) the
example uses CreateObject to start a new Word session.

Dim appWd as Word.Application
Err.Number= 0
On Error GoTo notloaded
Set appWd = GetObject(, "Word.Application.8")

93

Automating Office 97/2000

Notloaded:
If Err.Number = 429 Then
 Set appWd = CreateObject("Word.Application.8")
TheError = Err.Number
End If
AppWd.Visible = True
Wirth appWd
 Set myDoc = .Documents.Add
 With .Selection
 For Each c in Worksheets("Sheet1").Range("A1:B10")
 .InsertAfter Text:=c.Value
 Count = Count + 1
 If Count Mod 2 = 0 Then
 .InsertAfter Text:=vbCr
 Else
 .InsertAfter Text:=vbTab
 End If
 Next c
 .Range.ConvertToTable Separator:=wdSeparateByTabs
 .Tables(1).AutoFormat Format:=wdTableFormatClassic1
 End With
 MyDoc.SaveAs FileName:="C:\Temp.doc"
End With
If theError = 429 the appWd.Quit
Set appWd = Nothing

Automating Another Application from Word

To exchange data with another application by using Automation from Word, you must
first set a reference to the other application's type library in the References dialog
box (Tools menu). Then the objects, properties and methods of the other application
will appear in the Object Browser, and the syntax will be automatically checked at
compile time. You can also get context-sensitive help on these objects, properties and
methods.

Next, declare object variables that will refer to the objects in the other application as
specific types. The following example declares a variable that will point to the Excel
Application object:

Dim xlObj as Excel.Application.8

You obtain a reference to the Automation object by using CreateObject or
GetObject as before, and you then have access to the objects, properties and
methods of the other application. The following Word examples determines if Excel is
currently running and if so uses GetObject to create a reference to the Excel
Application object. If not, CreateObject is used. The example then sends the
selected text to cell A1 of Sheet1 in the active workbook. Use the Set statement with
the Nothing keyword to clear the Automation object variable after the task has been
completed.

Dim xlObj As Excel.Application.8
If Tasks.Exists("Microsoft Excel") = True then
 Set xlObj = GetObject(, "Excel.Application.8")
Else
 Set xlObj = CreateObject("Excel.Application.8")
End If
XlObj.Visible = True
If xlObj.Workbooks.Count = 0 the xlObj.Workbooks.Add
XlObj.Worksheets("Sheet1").Range("A1").Value = Selection.Text
Set xlObj = Nothing

94

Using DLLs and the Windows API

The following Word example creates a new PowerPoint presentation with the first text
box including the name of the first active Word document and the second including
the text from the first paragraph in the active document:

Dim pptObj as PowerPoint.Application.8
If Tasks.Exists("Microsoft PowerPoint") = True Then
 Set pptObj = GetObject(, "PowerPoint.Application.8")
Else
 Set pptObj = CreateObject("PowerPoint.Application.8")
End If
PptObj.Visible = True
Set pptPres = pptObj.Presentations.Add
Set aSlide = pptPres.Slides.Add(Index:=1, Layout:=ppLayoutText)
ASlide.Shapes(1).TextFrame.TextRange.Text = ActiveDocument.Name
ASlide.Shapes(2).TextFrame.TextRange.Text = _
 ActiveDocument.Paragraphs(1).Range.Text
Set pptObj = Nothing

Other possible declarations are given below:

Dim xlApp As Excel.Application
Dim xlBook As Excel.Workbook
Dim xlSheet As Excel.WorkSheet
Set xlApp = CreateObject("Excel.Application")
Set xlBook = xlApp.Workbooks.Add
Set xlSheet = xlBook.Worksheets(1)

Communicating with Embedded Word Objects
When you embed a Word document in an Excel worksheet, Excel controls the object,
and Word controls everything inside the object.

A linked object is an object that contains a reference pointer to its application. Data
associated with a linked object are not stored within the application that contains the
object. If you change the data in a linked application, the data will change in the
original application as well.

An embedded object contains a "snapshot" of the data existing at the time you
embedded the object. Data associated with an embedded object are stored in the file
in which the object is embedded. If you change the data in an embedded object, the
data in the original application do not change.

An OLE container application can store embedded or linked objects provided by OLE
object applications. An OLE object application is an application that exposes an OLE
object.

Editing an Embedded Word Object
To edit a Word document embedded as an OLE object, you must activate it before you
can refer to one of the top-level objects. The following example activates and edits a
Word document, which is the first OLE object on sheet1:

Dim wordobj as Object
Worksheets("sheet1").OLEObjects(1).Verb
Set wordobj=Worksheets("sheet1").OLEObjects(1).Object
.Application.WordBasic
With wordobj
 .Insert "This is the first new line."
 .InsertPara
 .LineUp 1
 .EndOfLine 1
 .Bold
 .LineDown 1

95

Automating Office 97/2000

End With

Using the Verb method with no arguments, as above, is equivalent to using the
Activate method. For more information, see the Verb method in Help.

Printing an Embedded Word Object
Dim wordobj as Object
Worksheets("sheet1").OLEObjects(1).Verb
Set wordobj=Worksheets("sheet1").OLEObjects(1).Object .Application.WordBasic
With wordobj
 .Insert "This is the first new line."
 .InsertPara
 .FilePrint
 .FileClose
End With

Sending Keystrokes
You can send keystrokes to other Windows applications using the SendKeys method.

The SendKeys method is processed when your system is idle or when the DoEvents
method is called. If the Wait argument of the SendKeys method is True, Excel waits
for the keys to be processed before returning control to the calling procedure; if
False the procedure continues to run without waiting for the keys to be processed.
The following example sends keystrokes to the Calculator that add numbers from 1 to
10 and then close the Calculator

Sub DemoSendKeys()
 returnvalue = Shell("calc.exe",1)
 AppActivate returnvalue
 For i=1 to 10
 SendKeys i & "{+}", True
 Next i
 SendKeys "=", True
 SendKeys "%{F4}", True
End Sub

Note Keystrokes are sent to the active application. If this isn’t the one you want to
receive the keystrokes, you need to activate it using the AppActivate statement. If
the application you want to send keystrokes to isn’t already running, start it using the
Shell function.

To specify characters that aren’t displayed when you press the key (such as ENTER or
TAB), enclose the key code in braces - {} - and enclose the braces in straight double-
quotation marks. To specify a key to be used in combination with SHIFT, CTRL or
ALT, precede the braces with +, ^ or % respectively. The following example sends
the key combination ALT+F4:

SendKeys "%{F4}", True

For a complete list of key codes, see "SendKeys" method in Help.

NB : you cannot send keystrokes that generate interrupts instead of character codes,
such as CTRL+ALT+DEL, or PRINT SCREEN.

96

Using DLLs and the Windows API

12. USING DLLs and THE WINDOWS API

A dynamic-link library (DLL) is a library of routines loaded into memory and linked to
applications at run-time. DLLs are usually created in a programming language such as
C, Delphi or Visual Basic, and contain procedures that you can call in your
applications. You can call DLL functions and functions within the Windows Applications
Programming Interface (API) from VBA.

Because DLL routines reside in files that are external to your application, you must let
VBA know where it can find the routines you want to use, and what the arguments of
each routine are. This information is provided with the Declare statement, placed in
the declarations section of a module. Once you have declared a DLL or Windows API
routine you can use it in your code like any other routine, although it must be
emphasised that you must pay very careful to ensuring the correct number any type
of arguments are passed. If you fail to do this you can crash your system!

There are two steps to using a DLL/API routine:

1. Tell VBA about the routine by using a Declare statement.

2. Make the actual call

You declare a function once only, but can call it a number of times from any procedure
in that workbook.

Declaring a DLL Routine
Place declarations at the top of your code (this is not necessary but it makes your
programs much easier to read this way!). For example:

Declare Function SetWindowText Lib "user32" Alias "SetWindowTextA" _
 (ByVal hwnd As Long, ByVal lpString As String) As Long

Declare Function GetSystemMetrics Lib "user32" (ByVal nIndex As Long) As Long

In 32-bit Microsoft Windows systems, you can use conditional compilation to write
code that can run on either Win32 or Win16:

#If Win32 Then
 Declare Sub MessageBeep Lib "User32" (ByVal N As Long)
#Else
 Declare Sub MessageBeep Lib "User" (ByVal N As Integer)
#End If

These statements declare routines in the Windows API library contained in
USER32.DLL. A full list of all Windows API functions and subroutines, containing the
syntax of their calls, can be found in the help file "WIN32API.TXT" which is available
for download from the unit webpages.

Also in the above directory are the following:
 WIN32API.TXT Lists Visual Basic calls to the 32-bit Windows API

Calling DLL Routines
Once a routine has been declared, you a can call it just as you would a VBA statement
or function. The following example uses the GetSystemMetrics Windows API routine
to determine whether a mouse is installed.

97

Automating Office 97/2000

The value 19 assigned to SM_MOUSEPRESENT is one of a number of values that can
be passed to this function.

Declare Function GetSystemMetrics Lib "user32" ByVal nIndex As Long) As Long
Sub Main()
 SM_MOUSEPRESENT=19
 If GetSystemMetrics(SM_MOUSEPRESENT) Then MsgBox "Mouse Installed"
End Sub

Important: VBA can’t verify that you are sending valid values to a DLL. If you pass
incorrect values the routine may fail, which may cause unexpected behaviour or errors
in your application or in the operating system. Take care when experimenting with
DLLs and save your work often.

An example of a partly-useful API call is in the generation of the standard Windows
"About" box. This is part of the code in the "BISECT.XLS" worksheet:

 Declare Function ShellAbout Lib "shell32.dll" Alias "ShellAboutA" _
 (ByVal hwnd As Long, ByVal szApp As String, ByVal szOtherStuff As _
 String, ByVal hIcon As Long) As Long

 Declare Function GetActiveWindow Lib "user32" Alias "GetActiveWindow" () _
 As Long

 Sub About()
 Dim hWnd As Integer
 Dim windowname As String
 nl$ = Chr$(10) + Chr$(13)
 hWnd = GetActiveWindow()
 x = ShellAbout(hWnd, "Brilliant Code", nl$ + Chr$(169) + _
 " Jeff Waldock, July 9, 1998" + nl$, 0)
 End Sub

Note that the declaration statements must each be one single line, not with the line
continuation characters included here.

The GetActiveWindow function determines the "handle" hWnd of the currently active
window. This is one of the parameters to the ShellAbout function; the others are
obvious! Note also that parameters are often passed to the DLLs using the "ByVal"
keyword. This indicates that the values are passed by value rather than by reference
(i.e. address). It is important that you remember to do this!

98

